home-lab/research/claude-task-master-ai-integration-status.md
Geir Okkenhaug Jerstad a9f490882a Update Claude Task Master AI integration status with comprehensive documentation
- Added detailed status report covering completed work
- Documented current configuration for Ollama integration
- Listed all available MCP tools and their functionality
- Included troubleshooting guide and next steps
- Documented architecture and workflow for VS Code MCP integration
2025-06-14 16:43:23 +02:00

122 lines
4.3 KiB
Markdown

# Claude Task Master AI - Nix Package & VS Code MCP Integration
## Current Status
### ✅ Completed
1. **Nix Package**: Successfully built and packaged Claude Task Master AI
2. **Local Installation**: Binary available at `/home/geir/Home-lab/result/bin/task-master-ai`
3. **Ollama Integration**: Configured to use local Ollama models on grey-area:11434
4. **VS Code MCP Setup**: Configured for integration with Cursor/VS Code
### 🔧 Configuration Files
#### Task Master Configuration
- **Location**: `/home/geir/Home-lab/.taskmaster/config.json`
- **Models**:
- Main: `qwen3:4b` (general tasks)
- Research: `deepseek-r1:1.5b` (reasoning tasks)
- Fallback: `gemma3:4b-it-qat` (backup)
- **Provider**: `openai` (using OpenAI-compatible API)
- **Base URL**: `http://grey-area:11434/v1`
#### VS Code MCP Configuration
- **Location**: `/home/geir/Home-lab/.cursor/mcp.json`
- **Command**: Direct path to Nix-built binary
- **Environment**: OpenAI-compatible mode with local Ollama
### 🎯 Available MCP Tools
The Task Master MCP server provides these tools for AI assistants:
#### Project Management
- `initialize_project` - Set up new Task Master project
- `models` - Configure AI models and check status
- `parse_prd` - Generate tasks from PRD documents
#### Task Operations
- `get_tasks` - List all tasks with filtering
- `get_task` - Get specific task details
- `next_task` - Find next task to work on
- `add_task` - Create new tasks with AI
- `update_task` - Update existing task
- `set_task_status` - Change task status
- `remove_task` - Delete tasks
#### Subtask Management
- `add_subtask` - Add subtasks to existing tasks
- `update_subtask` - Update subtask information
- `remove_subtask` - Remove subtasks
- `clear_subtasks` - Clear all subtasks from tasks
#### Advanced Features
- `expand_task` - Break down tasks into subtasks
- `expand_all` - Auto-expand all pending tasks
- `analyze_project_complexity` - Complexity analysis
- `complexity_report` - View complexity reports
#### Dependencies
- `add_dependency` - Create task dependencies
- `remove_dependency` - Remove dependencies
- `validate_dependencies` - Check for issues
- `fix_dependencies` - Auto-fix dependency problems
### 🚀 Usage in VS Code
1. **Restart VS Code/Cursor** after updating `.cursor/mcp.json`
2. **Access via AI Chat**: Use Claude or GitHub Copilot
3. **Example Commands**:
- "Initialize a new Task Master project in my current directory"
- "Create a task for setting up a new home lab service"
- "Show me the next task I should work on"
- "Expand task 5 into detailed subtasks"
### 🔍 Current Issue
The Task Master binary works as an MCP server but appears to hang when making AI API calls to Ollama. This might be due to:
1. **Network connectivity** between the host and grey-area
2. **OpenAI API compatibility** formatting differences
3. **Authentication** handling with the fake API key
**Workaround**: Use Task Master through the MCP interface in VS Code, where the AI assistant can handle the tool calls without direct API communication.
### 🛠️ Troubleshooting
#### Check Ollama Connectivity
```bash
curl -X POST http://grey-area:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{"model": "qwen3:4b", "messages": [{"role": "user", "content": "Hello"}]}'
```
#### Verify Task Master Tools
```bash
cd /home/geir/Home-lab
echo '{"jsonrpc": "2.0", "id": 1, "method": "tools/list", "params": {}}' | \
OPENAI_API_KEY="fake-key" OPENAI_BASE_URL="http://grey-area:11434/v1" \
./result/bin/task-master-ai
```
#### Check MCP Server Status
In VS Code, open the Output panel and look for MCP server connection logs.
### 📋 Next Steps
1. **Test MCP Integration**: Try using Task Master tools through VS Code AI chat
2. **Debug API Connectivity**: Investigate why Task Master hangs on API calls
3. **Create Sample Project**: Initialize a test project to validate functionality
4. **Documentation**: Create user guides for common workflows
### 🏗️ Architecture
```
VS Code/Cursor (AI Chat)
↓ MCP Protocol
Task Master AI (Nix Binary)
↓ OpenAI-compatible API
Ollama (grey-area:11434)
↓ Model Inference
Local Models (qwen3:4b, deepseek-r1:1.5b, gemma3:4b-it-qat)
```
This setup provides a complete local AI-powered task management system integrated with your development environment while maintaining full privacy and control over your data.