scheme/little_schemer/the-little-schemer.rkt

1248 lines
36 KiB
Racket
Raw Permalink Normal View History

2024-08-20 19:10:43 +02:00
#lang racket
;; Used to redefine Racket functions in terms of the original functions
(require (rename-in racket
[cons racket-cons]
[null? racket-null?]
[eq? racket-eq?]
[+ racket+]
[- racket-]
[number? racket-number?]))
(provide (all-defined-out))
;;**********************************************************
;; Preface
;;**********************************************************
;; [Primitive]
;; Predicate for determining if a value is an atom or not.
;; The definition of this is found in the preface.
(define (atom? x)
(and (not (pair? x)) (not (racket-null? x))))
;; Note that we need to use the racket-null? and not our newly contracted null?
;; becuase x may be an atom, which racket-null? supports and null? (as defined
;; in the book and thus our contracted version) does not.
;;**********************************************************
;; Chapter 1
;;**********************************************************
;; [Primitive]
;; Predicate for determining if a value is an S-expression or not
(define (s-exp? x)
(or (atom? x) (list? x)))
;; [Primitive]
;; Provide a cons as defined in the book such that it requires a list as
;; the second argument. This is enforced using Racket's contract system.
;; Racket's cons works on any values, as mentioned in the footnote on page 8.
(define/contract (cons s l)
(-> any/c list? list?)
(racket-cons s l))
;; [Primitive]
;; Provide a cons as defined in the book such that it requires a list as
;; the argument. See the footnote on page 10.
(define/contract (null? l)
(-> list? boolean?)
(racket-null? l))
;; [Primitive]
;; Provide an eq? as defined in the book such that it requires a non-numeric
;; atom for each argument. See the footnotes on page 12.
(define/contract (eq? a b)
(-> (and/c atom? (not/c racket-number?)) (and/c atom? (not/c racket-number?)) boolean?)
(racket-eq? a b))
;;**********************************************************
;; Chapter 2
;;**********************************************************
;; Predicate for determining if a value is a list of atoms or not
(define lat?
(lambda (l)
(cond
[(null? l) #t]
[(atom? (car l)) (lat? (cdr l))]
[else #f])))
;; Predicate for determining if a value is an element of the list of atoms or not
#;(define member?
(lambda (a lat)
(cond
[(null? lat) #f]
[else (or (eq? (car lat) a)
(member? a (cdr lat)))])))
;;**********************************************************
;; Chapter 3
;;**********************************************************
;; Removes the first occurence of the atom, if possible, in the list of atoms
;; (Rewritten below in the Chapter 5 section using equal? as instructed by the book)
#;(define rember
(lambda (a lat)
(cond
[(null? lat) '()]
[(eq? a (car lat)) (cdr lat)]
[else (cons (car lat)
(rember a (cdr lat)))])))
;; Takes a list and returns a list of the first elements of each sublist
(define firsts
(lambda (l)
(cond
[(null? l) '()]
[else (cons (car (car l))
(firsts (cdr l)))])))
;; Inserts new after the first occurrence, if any, of old in lat, a list of atoms
;; (Rewritten using insert-g in Chapter 8.)
#;(define insertR
(lambda (new old lat)
(cond
[(null? lat) '()]
[(eq? old (car lat)) (cons old
(cons new (cdr lat)))]
[else (cons (car lat)
(insertR new old (cdr lat)))])))
;; Inserts new before the first occurrence, if any, of old in lat, a list of atoms
;; (Rewritten using insert-g in Chapter 8.)
#;(define insertL
(lambda (new old lat)
(cond
[(null? lat) '()]
[(eq? old (car lat)) (cons new lat)] ; since (cons old (cdr lat)) = lat when old = (car lat)
[else (cons (car lat)
(insertL new old (cdr lat)))])))
;; Replaces the first occurrence of old, if any, with new, in lat, a list of atoms
;; (Rewritten using insert-g in Chapter 8.)
#;(define subst
(lambda (new old lat)
(cond
[(null? lat) '()]
[(eq? old (car lat)) (cons new (cdr lat))]
[else (cons (car lat)
(subst new old (cdr lat)))])))
;; Replaces the first occurence of o1 or o2, if any, in lat, a list of atoms
(define subst2
(lambda (new o1 o2 lat)
(cond
[(null? lat) '()]
[(or (eq? o1 (car lat)) (eq? o2 (car lat))) (cons new (cdr lat))]
[else (cons (car lat)
(subst2 new o1 o2 (cdr lat)))])))
;; Removes all occurrences of a in lat, a list of atoms
#;(define multirember
(lambda (a lat)
(cond
[(null? lat) '()]
[(eq? a (car lat)) (multirember a (cdr lat))]
[else (cons (car lat)
(multirember a (cdr lat)))])))
;; Inserts new after all occurrences of old in lat, a list of atoms
(define multiinsertR
(lambda (new old lat)
(cond
[(null? lat) '()]
[(eq? old (car lat)) (cons old
(cons new
(multiinsertR new old (cdr lat))))]
[else (cons (car lat)
(multiinsertR new old (cdr lat)))])))
;; Inserts new before all occurrences of old in lat, a list of atoms
(define multiinsertL
(lambda (new old lat)
(cond
[(null? lat) '()]
[(eq? old (car lat)) (cons new
(cons (car lat)
(multiinsertL new old (cdr lat))))] ; since (cons old (cdr lat)) = lat when old = (car lat)
[else (cons (car lat)
(multiinsertL new old (cdr lat)))])))
;; Replaces all occurrences of old with new in lat, a list of atoms
(define multisubst
(lambda (new old lat)
(cond
[(null? lat) '()]
[(eq? old (car lat)) (cons new (multisubst new old (cdr lat)))]
[else (cons (car lat)
(multisubst new old (cdr lat)))])))
;;**********************************************************
;; Chapter 4
;;**********************************************************
;; Adds 1 to the number n
(define add1
(lambda (n)
(racket+ n 1)))
;; Subtracts 1 from the number n
(define sub1
(lambda (n)
(racket- n 1)))
;; Add two non-negative integer numbers
(define +
(lambda (n m)
(cond
[(zero? m) n]
[else (+ (add1 n) (sub1 m))])))
; I think this is more clear by adding 1 to n rather than the result
;; Subtract two non-negative integer numbers
(define -
(lambda (n m)
(cond
[(zero? m) n]
[else (- (sub1 n) (sub1 m))])))
; I think this is more clear by subtracting 1 from n rather than the result
;; [Primitive]
;; Predicate for determining if a list is a list of non-negative numbers or not
(define (tup? x)
(andmap exact-nonnegative-integer? x))
;; Adds all the numbers in a tuple together
(define addtup
(lambda (tup)
(cond
[(null? tup) 0]
[else (+ (car tup) (addtup (cdr tup)))])))
;; Multiples two non-negative integer numbers
(define ×
(lambda (n m)
(cond
[(zero? m) 0]
[else (+ n (× n (sub1 m)))])))
;; Adds the elements of two tuples together
(define tup+
(lambda (tup1 tup2)
(cond
[(null? tup1) tup2]
[(null? tup2) tup1]
[else (cons (+ (car tup1) (car tup2))
(tup+ (cdr tup1) (cdr tup2)))])))
;; Determines if n > m
(define >
(lambda (n m)
(cond
[(zero? n) #f]
[(zero? m) #t]
[else (> (sub1 n) (sub1 m))])))
;; Determines if n < m
(define <
(lambda (n m)
(cond
[(zero? m) #f]
[(zero? n) #t]
[else (< (sub1 n) (sub1 m))])))
;; Determines if two numbers are equal or not
(define =
(lambda (n m)
(cond
[(< n m) #f]
[(> n m) #f]
[else #t])))
;; Computes n to the power of m
(define
(lambda (n m)
(cond
[(zero? m) 1]
[else (× n ( n (sub1 m)))])))
;; Computes how many times m divides n
(define ÷
(lambda (n m)
(cond
[(< n m) 0]
[else (add1 (÷ (- n m) m))])))
;; Returns the length of lat, a list of atoms
(define length
(lambda (lat)
(cond
[(null? lat) 0]
[else (add1 (length (cdr lat)))])))
;; Picks the nth element of lat, a list of atoms
(define pick
(lambda (n lat)
(cond
[(zero? (sub1 n)) (car lat)]
[else (pick (sub1 n) (cdr lat))])))
;; Removes the nth element from lat, a list of atoms
(define rempick
(lambda (n lat)
(cond
[(one? n) (cdr lat)]
[else (cons (car lat)
(rempick (sub1 n) (cdr lat)))])))
;; [Primitive]
;; Predicate for determining if a value is a numeric atom, i.e. a non-negative integer, or not
(define (number? x)
(exact-nonnegative-integer? x))
;; Removes all numbers from lat, a list of atoms
(define no-nums
(lambda (lat)
(cond
[(null? lat) '()]
[(number? (car lat)) (no-nums (cdr lat))]
[else (cons (car lat)
(no-nums (cdr lat)))])))
;; Returns a tuple made out of all the numbers in lat, a list of atoms
(define all-nums
(lambda (lat)
(cond
[(null? lat) '()]
[(number? (car lat)) (cons (car lat) (all-nums (cdr lat)))]
[else (all-nums (cdr lat))])))
;; Predicate that determines if a1 and a2 are the same number or same atom
(define eqan?
(lambda (a1 a2)
(cond
[(and (number? a1) (number? a2)) (= a1 a2)]
[(or (number? a1) (number? a2)) #f]
[else (eq? a1 a2)])))
;; Counts the number of times the atom a occurs in lat, a list of atoms
(define occur
(lambda (a lat)
(cond
[(null? lat) 0]
[(eq? a (car lat)) (add1 (occur a (cdr lat)))]
[else (occur a (cdr lat))])))
;; Predicate that determines if n is 1 or not
(define one?
(lambda (n)
(= n 1)))
;;**********************************************************
;; Chapter 5
;;**********************************************************
;; Removes the atom a everywhere it occurs the list l
(define rember*
(lambda (a l)
(cond
[(null? l) '()]
[(atom? (car l))
(cond
[(eq? a (car l)) (rember* a (cdr l))]
[else (cons (car l) (rember* a (cdr l)))])]
[else (cons (rember* a (car l)) (rember* a (cdr l)))])))
;; Inserts new to the right of where old appears everywhere in the list l
(define insertR*
(lambda (new old l)
(cond
[(null? l) '()]
[(atom? (car l))
(cond
[(eq? old (car l)) (cons old
(cons new
(insertR* new old (cdr l))))]
[else (cons (car l) (insertR* new old (cdr l)))])]
[else (cons (insertR* new old (car l))
(insertR* new old (cdr l)))])))
;; Counts how many times the atom a occurs in the list l
(define occur*
(lambda (a l)
(cond
[(null? l) 0]
[(atom? (car l))
(cond
[(eq? a (car l)) (add1 (occur* a (cdr l)))]
[else (occur* a (cdr l))])]
[else (+ (occur* a (car l))
(occur* a (cdr l)))])))
;; Replaces old with new everywhere old appears in the list l
(define subst*
(lambda (new old l)
(cond
[(null? l) '()]
[(atom? (car l))
(cond
[(eq? old (car l)) (cons new
(subst* new old (cdr l)))]
[else (cons (car l)
(subst* new old (cdr l)))])]
[else (cons (subst* new old (car l))
(subst* new old (cdr l)))])))
;; Inserts new to the left of where old appears everywhere in the list l
(define insertL*
(lambda (new old l)
(cond
[(null? l) '()]
[(atom? (car l))
(cond
[(eq? old (car l)) (cons new
(cons old
(insertL* new old (cdr l))))]
[else (cons (car l) (insertL* new old (cdr l)))])]
[else (cons (insertL* new old (car l))
(insertL* new old (cdr l)))])))
;; Determines if the atom is found in the list l
(define member*
(lambda (a l)
(cond
[(null? l) #f]
[(atom? (car l)) (or (eq? a (car l))
(member* a (cdr l)))]
[else (or (member* a (car l))
(member* a (cdr l)))])))
;; Returns the leftmost atom in a non-empty list
(define leftmost
(lambda (l)
(cond
[(atom? (car l)) (car l)]
[else (leftmost (car l))])))
;; Determines if the two lists are equal or not
;; (Rewritten below using equal? as instructed by the book)
#;(define eqlist?
(lambda (l1 l2)
(cond
[(and (null? l1) (null? l2)) #t]
[(or (null? l1) (null? l2)) #f]
[(and (atom? (car l1)) (atom? (car l2))) (and (eqan? (car l1) (car l2))
(eqlist? (cdr l1) (cdr l2)))]
[(or (atom? (car l1)) (atom? (car l2))) #f]
[else (and (eqlist? (car l1) (car l2))
(eqlist? (cdr l1) (cdr l2)))])))
;; Determines if the two S-expressions are equal or not
(define equal?
(lambda (s1 s2)
(cond
[(and (atom? s1) (atom? s2)) (eqan? s1 s2)]
[(or (atom? s1) (atom? s2)) #f]
[else (eqlist? s1 s2)])))
;; Determines if the two lists are equal or not
(define eqlist?
(lambda (l1 l2)
(cond
[(and (null? l1) (null? l2)) #t]
[(or (null? l1) (null? l2)) #f]
[else (and (equal? (car l1) (car l2))
(equal? (cdr l1) (cdr l2)))])))
;; Removes the first occurence of the atom, if possible, in the list of atoms
(define rember
(lambda (s l)
(cond
[(null? l) '()]
[(equal? s (car l)) (cdr l)]
[else (cons (car l)
(rember s (cdr l)))])))
;;**********************************************************
;; Chapter 6
;;**********************************************************
;; Determines if the arithmetic expression aexp contains only numbers besides +, ×, and ↑
#;(define numbered?
(lambda (aexp)
(cond
[(atom? aexp) (number? aexp)]
[(or (eq? (car (cdr aexp)) (quote +))
(eq? (car (cdr aexp)) (quote ×))
(eq? (car (cdr aexp)) (quote ))) (and (numbered? (car aexp)) (numbered? (car (cdr (cdr aexp)))))]
[else #f])))
;; Note: the book assumes aexp is already an arithmetic expression such that we don't need to test that it is
;; as this implementation does, looking for +, ×, and ↑.
;; Determines if the arithmetic expression aexp contains only numbers besides +, ×, and ↑
(define numbered?
(lambda (aexp)
(cond
[(atom? aexp) (number? aexp)]
[else (and (numbered? (car aexp))
(numbered? (car (cdr (cdr aexp)))))])))
;; The book has two implementations of value for two different representations.
;; The value for the first representation is what is implemented here.
;; Evaluates the value of a numbered arithmetic expression
#;(define value
(lambda (nexp)
(cond
[(atom? nexp) nexp] ; Really should ask number? and not just atom?
[(eq? (car (cdr nexp)) (quote +)) (+ (value (car nexp)) (value (car (cdr (cdr nexp)))))]
[(eq? (car (cdr nexp)) (quote ×)) (× (value (car nexp)) (value (car (cdr (cdr nexp)))))]
[(eq? (car (cdr nexp)) (quote )) ( (value (car nexp)) (value (car (cdr (cdr nexp)))))])))
;; Note: I'm not a fan of the book's implementation, which assumes ↑.
;; Gets the first sub-expression from an arithmetic expression
(define 1st-sub-exp
(lambda (aexp)
(car (cdr aexp))))
;; Gets the second sub-expression from an arithmetic expression
(define 2nd-sub-exp
(lambda (aexp)
(car (cdr (cdr aexp)))))
;; Gets the operator from an arithmetic expression
(define operator
(lambda (aexp)
(car aexp)))
;; Evaluates the value of a numbered arithmetic expression
;; (Rewritten using atom-to-function in Chapter 8.)
#;(define value
(lambda (nexp)
(cond
[(atom? nexp) nexp]
[(eq? (operator nexp) (quote +)) (+ (value (1st-sub-exp nexp)) (value (2nd-sub-exp nexp)))]
[(eq? (operator nexp) (quote ×)) (× (value (1st-sub-exp nexp)) (value (2nd-sub-exp nexp)))]
[(eq? (operator nexp) (quote )) ( (value (1st-sub-exp nexp)) (value (2nd-sub-exp nexp)))])))
;; Note: I'm not a fan of the book's implementation, which assumes ↑.
;;**********************************************************
;; Chapter 7
;;**********************************************************
;; Predicate for determining if a value is an element of the list of atoms or not
;; Redefined using equal? instead of eq?
(define member?
(lambda (a lat)
(cond
[(null? lat) #f]
[else (or (equal? (car lat) a)
(member? a (cdr lat)))])))
;; Determines whether a list of atoms is a set or not
(define set?
(lambda (lat)
(cond
[(null? lat) #t]
[(member? (car lat) (cdr lat)) #f]
[else (set? (cdr lat))])))
;; Makes a set out of a list of atoms
#;(define makeset
(lambda (lat)
(cond
[(null? lat) '()]
[(member? (car lat) (cdr lat)) (makeset (cdr lat))]
[else (cons (car lat) (makeset (cdr lat)))])))
;; Removes all occurrences of a in lat, a list of atoms
;; Redefined using equal? instead of eq?
(define multirember
(lambda (a lat)
(cond
[(null? lat) '()]
[(equal? a (car lat)) (multirember a (cdr lat))]
[else (cons (car lat)
(multirember a (cdr lat)))])))
;; Makes a set out of a list of atoms
(define makeset
(lambda (lat)
(cond
[(null? lat) '()]
[else (cons (car lat)
(makeset (multirember (car lat) (makeset (cdr lat)))))])))
;; Determines if set1 is a subset of set2 or not
(define subset?
(lambda (set1 set2)
(cond
[(null? set1) #t]
[else (and (member? (car set1) set2)
(subset? (cdr set1) set2))])))
;; Determines if the two sets are equal or not
(define eqset?
(lambda (set1 set2)
(and (subset? set1 set2)
(subset? set2 set1))))
;; Determines if the two set intersect or not
(define intersect?
(lambda (set1 set2)
(cond
[(null? set1) #t]
[else (or (member? (car set1) set2)
(intersect? (cdr set1) set2))])))
;; Returns the intersection of the two sets
(define intersect
(lambda (set1 set2)
(cond
[(null? set1) '()]
[(member? (car set1) set2) (cons (car set1)
(intersect (cdr set1) set2))]
[else (intersect (cdr set1) set2)])))
;; Returns the union of the two sets
(define union
(lambda (set1 set2)
(cond
[(null? set1) set2]
[(member? (car set1) set2) (union (cdr set1) set2)]
[else (cons (car set1)
(union (cdr set1) set2))])))
;; Intersects all the sets in the list of sets
(define intersectall
(lambda (l-set)
(cond
[(null? (cdr l-set)) (car l-set)]
[else (intersect (car l-set) (intersectall (cdr l-set)))])))
;; Determines whether an S-expression is a list of only two S-expressions
(define a-pair?
(lambda (x)
(cond
[(atom? x) #f]
[(null? x) #f]
[(null? (cdr x)) #f]
[else (and (s-exp? (car x))
(s-exp? (car (cdr x)))
(null? (cdr (cdr x))))])))
;; Returns the first S-expression of a list or pair
(define first
(lambda (p)
(car p)))
;; Returns the second S-expression of a list or pair
(define second
(lambda (p)
(car (cdr p))))
;; Returns the third S-expression of a list
(define third
(lambda (p)
(car (cdr (cdr p)))))
;; Builds a pair out of the two S-expressions
(define build
(lambda (s1 s2)
(cons s1 (cons s2 '()))))
;; Determines whether a relation is a function or not
(define fun?
(lambda (rel)
(set? (firsts rel))))
;; Reverses a pair
(define revpair
(lambda (pair)
(build (second pair)
(first pair))))
;; Reverses a relation
(define revrel
(lambda (rel)
(cond
[(null? rel) '()]
[else (cons (revpair (car rel))
(revrel (cdr rel)))])))
;; Takes a list and returns a list of the second elements of each sublist
(define seconds
(lambda (l)
(cond
[(null? l) '()]
[else (cons (second (car l))
(seconds (cdr l)))])))
;; Determines whether a function is full or not
(define fullfun?
(lambda (fun)
(set? (seconds fun))))
;; Determines whether a function is one-to-one or not
(define one-to-one?
(lambda (fun)
(fun? (revrel fun))))
;;**********************************************************
;; Chapter 8
;;**********************************************************
;; Removes the first occurence of the atom a where (test? a) is true in the list of atoms
;; (Rewritten below as instructed by the book)
#;(define rember-f
(lambda (test? a l)
(cond
[(null? l) '()]
[(test? a (car l)) (cdr l)]
[else (cons (car l)
(rember-f test? a (cdr l)))])))
;; Returns a function that tests equality against the atom a
(define eq?-c
(lambda (a)
(lambda (x)
(eq? x a))))
;; A function to test if the argument is eq? to 'salad
(define eq?-salad (eq?-c 'salad))
;; Removes the first occurence of the atom a where (test? a) is true in the list of atoms
(define rember-f
(lambda (test?)
(lambda (a l)
(cond
[(null? l) '()]
[(test? a (car l)) (cdr l)]
[else (cons (car l)
((rember-f test?) a (cdr l)))]))))
;; Removes the first occurence of the atom a, using eq?, in the list of atoms
(define rember-eq? (rember-f eq?))
;; Inserts new before the first occurrence, if any, of old in lat, a list of atoms
(define insertL-f
(lambda (test?)
(lambda (new old lat)
(cond
[(null? lat) '()]
[(test? old (car lat)) (cons new lat)] ; since (cons old (cdr lat)) = lat when old = (car lat)
[else (cons (car lat)
((insertL-f test?) new old (cdr lat)))]))))
;; Inserts new after the first occurrence, if any, of old in lat, a list of atoms
(define insertR-f
(lambda (test?)
(lambda (new old lat)
(cond
[(null? lat) '()]
[(test? old (car lat)) (cons old
(cons new (cdr lat)))]
[else (cons (car lat)
((insertR-f test?) new old (cdr lat)))]))))
;; Conses new onto the cons of old and l
(define seqL
(lambda (new old l)
(cons new (cons old l))))
;; Conses old onto the cons of new and l
(define seqR
(lambda (new old l)
(cons old (cons new l))))
(define insert-g
(lambda (seq)
(lambda (new old l)
(cond
[(null? l) '()]
[(eq? old (car l)) (seq new old (cdr l))]
[else (cons (car l)
((insert-g seq) new old (cdr l)))]))))
;; Inserts new before the first occurrence, if any, of old in lat, a list of atoms
(define insertL (insert-g seqL))
;; Inserts new after the first occurrence, if any, of old in lat, a list of atoms
(define insertR (insert-g seqR))
(define seqS
(lambda (new old l)
(cons new l)))
;; Replaces the first occurrence of old, if any, with new, in lat, a list of atoms
(define subst (insert-g seqS))
(define seqrem
(lambda (new old l)
l))
(define yyy
(lambda (a l)
((insert-g seqrem) #f a l)))
;; Takes '+, '×, and '↑ and returns +, ×, and ↑, respectively
(define atom-to-function
(lambda (x)
(cond
[(eq? x (quote +)) +]
[(eq? x (quote ×)) ×]
[else ])))
;; Evaluates the value of a numbered arithmetic expression
;; (Rewritten below in Chapter 10)
#;(define value
(lambda (nexp)
(cond
[(atom? nexp) nexp]
[else ((atom-to-function (operator nexp))
(value (1st-sub-exp nexp))
(value (2nd-sub-exp nexp)))])))
;; Removes all occurrences of a, using test?, in lat, a list of atoms
(define multirember-f
(lambda (test?)
(lambda (a lat)
(cond
[(null? lat) '()]
[(test? a (car lat)) ((multirember-f test?) a (cdr lat))]
[else (cons (car lat)
((multirember-f test?) a (cdr lat)))]))))
;; Removes all occurrences of a, using eq?, in lat, a list of atoms
(define multirember-eq? (multirember-f eq?))
;; A function to test if the argument is eq? to 'tuna
(define eq?-tuna (eq?-c (quote tuna)))
;; Removes all occurences that pass the test test? in lat, a list of atoms
(define multiremberT
(lambda (test? lat)
(cond [(null? lat) '()]
[(test? (car lat)) (multiremberT test? (cdr lat))]
[else (cons (car lat)
(multiremberT test? (cdr lat)))])))
;; Looks at every atom of lat, a list of atoms, to see whether
;; the atom is equal, using eq?, to a. Those atoms that are not
;; equal are collected in one list ls1. The atoms that are equal
;; are collected in a second list ls2. Finally, it determines the
;; value of (f ls1 ls2).
(define multirember&co
(lambda (a lat col)
(cond [(null? lat) (col '() '())]
[(eq? (car lat) a) (multirember&co a
(cdr lat)
(lambda (newlat seen)
(col newlat (cons (car lat) seen))))]
[else (multirember&co a
(cdr lat)
(lambda (newlat seen)
(col (cons (car lat) newlat) seen)))])))
(define a-friend
(lambda (x y)
(null? y)))
(define new-friend
(lambda (newlat seen)
(a-friend newlat
(cons (car 'tuna) seen))))
(define latest-friend
(lambda (newlat seen)
(a-friend (cons 'and newlat)
seen)))
(define last-friend
(lambda (x y)
(length x)))
;; Inserts new to the left of oldL and to the right of oldR in lat, a list of atoms,
;; for every occurrence of oldL and oldR
(define multiinsertLR
(lambda (new oldL oldR lat)
(cond [(null? lat) '()]
[(eq? (car lat) oldL) (cons new
(cons oldL
(multiinsertLR new oldL oldR (cdr lat))))]
[(eq? (car lat) oldR) (cons oldR
(cons new
(multiinsertLR new oldL oldR (cdr lat))))]
[else (cons (car lat)
(multiinsertLR new oldL oldR (cdr lat)))])))
(define multiinsertLR&co
(lambda (new oldL oldR lat col)
(cond [(null? lat) (col '() 0 0)]
[(eq? (car lat) oldL)
(multiinsertLR&co new oldL oldR (cdr lat)
(lambda (newlat L R)
(col (cons new
(cons oldL newlat))
(add1 L) R)))]
[(eq? (car lat) oldR)
(multiinsertLR&co new oldL oldR (cdr lat)
(lambda (newlat L R)
(col (cons oldR
(cons new newlat))
L (add1 R))))]
[else
(multiinsertLR&co new oldL oldR (cdr lat)
(lambda (newlat L R)
(col (cons (car lat) newlat) L R)))])))
;; Determines whether the number is even or not
(define even?
(lambda (n)
(= (× (÷ n 2) 2) n)))
;; Removes all odd numbers from a list of nested lists
(define evens-only*
(lambda (l)
(cond [(null? l) '()]
[(atom? (car l))
(cond [(even? (car l)) (cons (car l)
(evens-only* (cdr l)))]
[else (evens-only* (cdr l))])]
[else (cons (evens-only* (car l))
(evens-only* (cdr l)))])))
(define evens-only*&co
(lambda (l col)
(cond [(null? l) (col '() 1 0)]
[(atom? (car l))
(cond [(even? (car l))
(evens-only*&co (cdr l)
(lambda (newl p s)
(col (cons (car l) newl)
(× (car l) p) s)))]
[else (evens-only*&co (cdr l)
(lambda (newl p s)
(col newl
p (+ (car l) s))))])]
[else (evens-only*&co (car l)
(lambda (al ap as)
(evens-only*&co (cdr l)
(lambda (dl dp ds)
(col (cons al dl)
(× ap dp)
(+ as ds))))))])))
(define the-last-friend
(lambda (newl product sum)
(cons sum
(cons product newl))))
;;**********************************************************
;; Chapter 9
;;**********************************************************
(define looking
(lambda (a lat)
(keep-looking a (pick 1 lat) lat)))
(define keep-looking
(lambda (a sorn lat)
(cond [(number? sorn) (keep-looking a (pick sorn lat) lat)]
[else (eq? sorn a)])))
;; Note: a sorn is a symbol or a number
(define eternity
(lambda (x)
(eternity x)))
;; Takes a pair whose first component is a pair and builds a pair by
;; shifting the second part of the first component into the second
;; component
(define shift
(lambda (pair)
(build (first (first pair))
(build (second (first pair))
(second pair)))))
(define align
(lambda (pora)
(cond [(atom? pora) pora]
[(a-pair? (first pora)) (align (shift pora))]
[else (build (first pora)
(align (second pora)))])))
(define length*
(lambda (pora)
(cond [(atom? pora) 1]
[else (+ (length* (first pora))
(length* (second pora)))])))
(define weight*
(lambda (pora)
(cond [(atom? pora) 1]
[else (+ (× (weight* (first pora)) 2)
(weight* (second pora)))])))
(define shuffle
(lambda (pora)
(cond [(atom? pora) pora]
[(a-pair? (first pora)) (shuffle (revpair pora))]
[else (build (first pora)
(shuffle (second pora)))])))
(define C
(lambda (n)
(cond [(one? n) 1]
[else (cond [(even? n) (C (÷ n 2))]
[else (C (add1 (× 3 n)))])])))
(define A
(lambda (n m)
(cond [(zero? n) (add1 m)]
[(zero? m) (A (sub1 n) 1)]
[else (A (sub1 n)
(A n (sub1 m)))])))
(define Y
(lambda (le)
((lambda (f) (f f))
(lambda (f)
(le (lambda (x) ((f f) x)))))))
;;**********************************************************
;; Chapter 10
;;**********************************************************
;; Builds an entry from a set of names and a list of values
(define new-entry build)
;; Looks up the value corresponding to the name in the entry
;; and calls entry-f on name if the name is not in the entry
(define lookup-in-entry
(lambda (name entry entry-f)
(lookup-in-entry-help name
(first entry)
(second entry)
entry-f)))
;; Helper function for lookup-in-entry
(define lookup-in-entry-help
(lambda (name names values entry-f)
(cond [(null? names) (entry-f name)]
[(eq? (car names) name) (car values)]
[else (lookup-in-entry-help name
(cdr names)
(cdr values)
entry-f)])))
;; Takes an entry and table and returns a new table with the
;; entry at the front
(define extend-table cons)
;; Looks up the value corresponding to the name in the table, using
;; the first value found, and calls entry-f on name if the name is not
;; found in the entries listed in the table
(define lookup-in-table
(lambda (name table table-f)
(cond [(null? table) (table-f name)]
[else (lookup-in-entry name
(car table)
(lambda (name)
(lookup-in-table name
(cdr table)
(table-f))))])))
;; Converts an expression to an action
(define expression-to-action
(lambda (e)
(cond [(atom? e) (atom-to-action e)]
[else (list-to-action e)])))
;; Converts an atom to an action
(define atom-to-action
(lambda (e)
(cond [(number? e) *const]
[(eq? e #t) *const]
[(eq? e #f) *const]
[(eq? e 'cons) *const]
[(eq? e 'car) *const]
[(eq? e 'cdr) *const]
[(eq? e 'null?) *const]
[(eq? e 'eq?) *const]
[(eq? e 'atom?) *const]
[(eq? e 'zero?) *const]
[(eq? e 'add1) *const]
[(eq? e 'sub1) *const]
[(eq? e 'number?) *const]
[else *identifier])))
;; Converts a list to an action
(define list-to-action
(lambda (e)
(cond [(atom? (car e))
(cond [(eq? (car e) 'quote) *quote]
[(eq? (car e) 'lambda) *lambda]
[(eq? (car e) 'cond) *cond]
[else *application])]
[else *application])))
(define value
(lambda (e)
(meaning e '())))
(define meaning
(lambda (e table)
((expression-to-action e) e table)))
(define *const
(lambda (e table)
(cond [(number? e) e]
[(eq? e #t) #t]
[(eq? e #f) #f]
[else (build 'primitive e)])))
(define *quote
(lambda (e table)
(text-of e)))
(define text-of second)
(define *identifier
(lambda (e table)
(lookup-in-table e table initial-table)))
(define initial-table
(lambda (name)
(car '())))
(define *lambda
(lambda (e table)
(build 'non-primitive
(cons table (cdr e)))))
(define table-of first)
(define formals-of second)
(define body-of third)
(define evcon
(lambda (lines table)
(cond [(else? (question-of (car lines)))
(meaning (answer-of (car lines)) table)]
[(meaning (question-of (car lines)) table)
(meaning (answer-of (car lines)) table)]
[else (evcon (cdr lines) table)])))
(define else?
(lambda (x)
(cond
[(atom? x) (eq? x 'else)]
(else #f))))
(define question-of first)
(define answer-of second)
(define *cond
(lambda (e table)
(evcon (cond-lines-of e) table)))
(define cond-lines-of cdr)
(define evlis
(lambda (args table)
(cond [(null? args) '()]
[else (cons (meaning (car args) table)
(evlis (cdr args) table))])))
(define *application
(lambda (e table)
(apply (meaning (function-of e) table)
(evlis (arguments-of e) table))))
(define function-of car)
(define arguments-of cdr)
(define primitive?
(lambda (l)
(eq? (first l) 'primitive)))
(define non-primitive?
(lambda (l)
(eq? (first l) 'non-primitive)))
(define apply
(lambda (fun vals)
(cond [(primitive? fun) (apply-primitive (second fun) vals)]
[(non-primitive? fun) (apply-closure (second fun) vals)])))
(define apply-primitive
(lambda (name vals)
(cond [(eq? name 'cons) (cons (first vals) (second vals))]
[(eq? name 'car) (car (first vals))]
[(eq? name 'cdr) (cdr (first vals))]
[(eq? name 'null?) (null? (first vals))]
[(eq? name 'eq?) (eq? (first vals) (second vals))]
[(eq? name 'atom?) (atom? (first vals))]
[(eq? name 'add1) (add1 (first vals))]
[(eq? name'sub1) (sub1 (first vals))]
[(eq? name 'number?) (number? (first vals))])))
(define apply-closure
(lambda (closure vals)
(meaning (body-of closure)
(extend-table
(new-entry
(formals-of closure)
vals)
(table-of closure)))))
;;**********************************************************
;; Tests
;;**********************************************************
(module+ test
(require rackunit)
;;********************************************************
;; Primitives
;;********************************************************
(check-false (atom? (quote ())))
(check-false (atom? '()))
(check-true (s-exp? '()))
(check-true (s-exp? 'symbol))
(check-equal? (cons 'a '()) '(a))
(check-equal? (cons 'a '(b)) '(a b))
(check-exn exn:fail? (thunk(cons 'a 'b)))
(check-pred null? '())
(check-pred null? (quote ()))
(check-pred null? empty)
(check-exn exn:fail? (thunk (null? 'a)))
)