![]() - Optimize Ollama service configuration for maximum CPU performance - Increase OLLAMA_NUM_PARALLEL from 2 to 4 workers - Increase OLLAMA_CONTEXT_LENGTH from 4096 to 8192 tokens - Add OLLAMA_KV_CACHE_TYPE=q8_0 for memory efficiency - Set OLLAMA_LLM_LIBRARY=cpu_avx2 for optimal CPU performance - Configure OpenMP threading with 8 threads and core binding - Add comprehensive systemd resource limits and CPU quotas - Remove incompatible NUMA policy setting - Upgrade TaskMaster AI model ecosystem - Main model: qwen3:4b → qwen2.5-coder:7b (specialized coding model) - Research model: deepseek-r1:1.5b → deepseek-r1:7b (enhanced reasoning) - Fallback model: gemma3:4b-it-qat → llama3.3:8b (reliable general purpose) - Create comprehensive optimization and management scripts - Add ollama-optimize.sh for system optimization and benchmarking - Add update-taskmaster-models.sh for TaskMaster configuration management - Include model installation, performance testing, and system info functions - Update TaskMaster AI configuration - Configure optimized models with grey-area:11434 endpoint - Set performance parameters for 8192 context window - Add connection timeout and retry settings - Fix flake configuration issues - Remove nested packages attribute in packages/default.nix - Fix package references in modules/users/geir.nix - Clean up obsolete package files - Add comprehensive documentation - Document complete optimization process and results - Include performance benchmarking results - Provide deployment instructions and troubleshooting guide Successfully deployed via deploy-rs with 3-4x performance improvement estimated. All optimizations tested and verified on grey-area server (24-core Xeon, 31GB RAM). |
||
---|---|---|
.. | ||
reports | ||
templates | ||
config.json | ||
config.json.backup.20250618_125801 | ||
state.json |