Update Claude Task Master AI integration status with comprehensive documentation
- Added detailed status report covering completed work - Documented current configuration for Ollama integration - Listed all available MCP tools and their functionality - Included troubleshooting guide and next steps - Documented architecture and workflow for VS Code MCP integration
This commit is contained in:
parent
71cc7d708d
commit
a9f490882a
1 changed files with 122 additions and 0 deletions
|
@ -0,0 +1,122 @@
|
|||
# Claude Task Master AI - Nix Package & VS Code MCP Integration
|
||||
|
||||
## Current Status
|
||||
|
||||
### ✅ Completed
|
||||
1. **Nix Package**: Successfully built and packaged Claude Task Master AI
|
||||
2. **Local Installation**: Binary available at `/home/geir/Home-lab/result/bin/task-master-ai`
|
||||
3. **Ollama Integration**: Configured to use local Ollama models on grey-area:11434
|
||||
4. **VS Code MCP Setup**: Configured for integration with Cursor/VS Code
|
||||
|
||||
### 🔧 Configuration Files
|
||||
|
||||
#### Task Master Configuration
|
||||
- **Location**: `/home/geir/Home-lab/.taskmaster/config.json`
|
||||
- **Models**:
|
||||
- Main: `qwen3:4b` (general tasks)
|
||||
- Research: `deepseek-r1:1.5b` (reasoning tasks)
|
||||
- Fallback: `gemma3:4b-it-qat` (backup)
|
||||
- **Provider**: `openai` (using OpenAI-compatible API)
|
||||
- **Base URL**: `http://grey-area:11434/v1`
|
||||
|
||||
#### VS Code MCP Configuration
|
||||
- **Location**: `/home/geir/Home-lab/.cursor/mcp.json`
|
||||
- **Command**: Direct path to Nix-built binary
|
||||
- **Environment**: OpenAI-compatible mode with local Ollama
|
||||
|
||||
### 🎯 Available MCP Tools
|
||||
|
||||
The Task Master MCP server provides these tools for AI assistants:
|
||||
|
||||
#### Project Management
|
||||
- `initialize_project` - Set up new Task Master project
|
||||
- `models` - Configure AI models and check status
|
||||
- `parse_prd` - Generate tasks from PRD documents
|
||||
|
||||
#### Task Operations
|
||||
- `get_tasks` - List all tasks with filtering
|
||||
- `get_task` - Get specific task details
|
||||
- `next_task` - Find next task to work on
|
||||
- `add_task` - Create new tasks with AI
|
||||
- `update_task` - Update existing task
|
||||
- `set_task_status` - Change task status
|
||||
- `remove_task` - Delete tasks
|
||||
|
||||
#### Subtask Management
|
||||
- `add_subtask` - Add subtasks to existing tasks
|
||||
- `update_subtask` - Update subtask information
|
||||
- `remove_subtask` - Remove subtasks
|
||||
- `clear_subtasks` - Clear all subtasks from tasks
|
||||
|
||||
#### Advanced Features
|
||||
- `expand_task` - Break down tasks into subtasks
|
||||
- `expand_all` - Auto-expand all pending tasks
|
||||
- `analyze_project_complexity` - Complexity analysis
|
||||
- `complexity_report` - View complexity reports
|
||||
|
||||
#### Dependencies
|
||||
- `add_dependency` - Create task dependencies
|
||||
- `remove_dependency` - Remove dependencies
|
||||
- `validate_dependencies` - Check for issues
|
||||
- `fix_dependencies` - Auto-fix dependency problems
|
||||
|
||||
### 🚀 Usage in VS Code
|
||||
|
||||
1. **Restart VS Code/Cursor** after updating `.cursor/mcp.json`
|
||||
2. **Access via AI Chat**: Use Claude or GitHub Copilot
|
||||
3. **Example Commands**:
|
||||
- "Initialize a new Task Master project in my current directory"
|
||||
- "Create a task for setting up a new home lab service"
|
||||
- "Show me the next task I should work on"
|
||||
- "Expand task 5 into detailed subtasks"
|
||||
|
||||
### 🔍 Current Issue
|
||||
|
||||
The Task Master binary works as an MCP server but appears to hang when making AI API calls to Ollama. This might be due to:
|
||||
|
||||
1. **Network connectivity** between the host and grey-area
|
||||
2. **OpenAI API compatibility** formatting differences
|
||||
3. **Authentication** handling with the fake API key
|
||||
|
||||
**Workaround**: Use Task Master through the MCP interface in VS Code, where the AI assistant can handle the tool calls without direct API communication.
|
||||
|
||||
### 🛠️ Troubleshooting
|
||||
|
||||
#### Check Ollama Connectivity
|
||||
```bash
|
||||
curl -X POST http://grey-area:11434/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"model": "qwen3:4b", "messages": [{"role": "user", "content": "Hello"}]}'
|
||||
```
|
||||
|
||||
#### Verify Task Master Tools
|
||||
```bash
|
||||
cd /home/geir/Home-lab
|
||||
echo '{"jsonrpc": "2.0", "id": 1, "method": "tools/list", "params": {}}' | \
|
||||
OPENAI_API_KEY="fake-key" OPENAI_BASE_URL="http://grey-area:11434/v1" \
|
||||
./result/bin/task-master-ai
|
||||
```
|
||||
|
||||
#### Check MCP Server Status
|
||||
In VS Code, open the Output panel and look for MCP server connection logs.
|
||||
|
||||
### 📋 Next Steps
|
||||
|
||||
1. **Test MCP Integration**: Try using Task Master tools through VS Code AI chat
|
||||
2. **Debug API Connectivity**: Investigate why Task Master hangs on API calls
|
||||
3. **Create Sample Project**: Initialize a test project to validate functionality
|
||||
4. **Documentation**: Create user guides for common workflows
|
||||
|
||||
### 🏗️ Architecture
|
||||
|
||||
```
|
||||
VS Code/Cursor (AI Chat)
|
||||
↓ MCP Protocol
|
||||
Task Master AI (Nix Binary)
|
||||
↓ OpenAI-compatible API
|
||||
Ollama (grey-area:11434)
|
||||
↓ Model Inference
|
||||
Local Models (qwen3:4b, deepseek-r1:1.5b, gemma3:4b-it-qat)
|
||||
```
|
||||
|
||||
This setup provides a complete local AI-powered task management system integrated with your development environment while maintaining full privacy and control over your data.
|
Loading…
Add table
Add a link
Reference in a new issue