Some research into building a RAG

This commit is contained in:
Geir Okkenhaug Jerstad 2025-06-16 08:58:52 +02:00
parent efa047b9c9
commit 89a7fe100d
3 changed files with 917 additions and 110 deletions

View file

@ -4,8 +4,93 @@
This roadmap outlines the complete integration of Retrieval Augmented Generation (RAG), Model Context Protocol (MCP), and Claude Task Master AI to create an intelligent development environment for your NixOS-based home lab. The system provides AI-powered assistance that understands your infrastructure, manages complex projects, and integrates seamlessly with modern development workflows. This roadmap outlines the complete integration of Retrieval Augmented Generation (RAG), Model Context Protocol (MCP), and Claude Task Master AI to create an intelligent development environment for your NixOS-based home lab. The system provides AI-powered assistance that understands your infrastructure, manages complex projects, and integrates seamlessly with modern development workflows.
**📅 Document Updated**: June 16, 2025
**🎯 Current Status**: Phase 4 - Task Master AI Integration (Partially Complete)
## Current Project Status (June 2025)
### ✅ **Completed Components**
#### Task Master AI Core
- **Installation**: Claude Task Master AI successfully packaged for NixOS
- **Local Binary**: Available at `/home/geir/Home-lab/result/bin/task-master-ai`
- **Ollama Integration**: Configured to use local models (qwen3:4b, deepseek-r1:1.5b, gemma3:4b-it-qat)
- **MCP Server**: Fully functional with 25+ MCP tools for AI assistants
- **VS Code Integration**: Configured for Cursor/VS Code with MCP protocol
#### Infrastructure Components
- **NixOS Service Module**: `rag-taskmaster.nix` implemented with full configuration options
- **Active Projects**:
- Home lab (deploy-rs integration): 90% complete (9/10 tasks done)
- Guile tooling migration: 12% complete (3/25 tasks done)
- **Documentation**: Comprehensive technical documentation in `/research/`
### 🔄 **In Progress**
#### RAG System Implementation
- **Status**: Planned but not yet deployed
- **Dependencies**: Need to implement RAG core components
- **Module Ready**: NixOS service module exists but needs RAG implementation
#### MCP Integration for RAG
- **Status**: Bridge architecture designed
- **Requirements**: Need to implement RAG MCP server alongside existing Task Master MCP
### 📋 **Outstanding Requirements**
#### Phase 1-3 Implementation Needed
1. **RAG Foundation** - Core RAG system with document indexing
2. **MCP RAG Server** - Separate MCP server for document queries
3. **Production Deployment** - Deploy services to grey-area server
4. **Cross-Service Integration** - Connect RAG and Task Master systems
### 🎯 **Current Active Focus**
- Deploy-rs integration project (nearly complete)
- Guile home lab tooling migration (early phase)
## System Overview ## System Overview
## Current Project Status (June 2025)
### ✅ **Completed Components**
#### Task Master AI Core
- **Installation**: Claude Task Master AI successfully packaged for NixOS
- **Local Binary**: Available at `/home/geir/Home-lab/result/bin/task-master-ai`
- **Ollama Integration**: Configured to use local models (qwen3:4b, deepseek-r1:1.5b, gemma3:4b-it-qat)
- **MCP Server**: Fully functional with 25+ MCP tools for AI assistants
- **VS Code Integration**: Configured for Cursor/VS Code with MCP protocol
#### Infrastructure Components
- **NixOS Service Module**: `rag-taskmaster.nix` implemented with full configuration options
- **Active Projects**:
- Home lab (deploy-rs integration): 90% complete (9/10 tasks done)
- Guile tooling migration: 12% complete (3/25 tasks done)
- **Documentation**: Comprehensive technical documentation in `/research/`
### 🔄 **In Progress**
#### RAG System Implementation
- **Status**: Planned but not yet deployed
- **Dependencies**: Need to implement RAG core components
- **Module Ready**: NixOS service module exists but needs RAG implementation
#### MCP Integration for RAG
- **Status**: Bridge architecture designed
- **Requirements**: Need to implement RAG MCP server alongside existing Task Master MCP
### 📋 **Outstanding Requirements**
#### Phase 1-3 Implementation Needed
1. **RAG Foundation** - Core RAG system with document indexing
2. **MCP RAG Server** - Separate MCP server for document queries
3. **Production Deployment** - Deploy services to grey-area server
4. **Cross-Service Integration** - Connect RAG and Task Master systems
### 🎯 **Current Active Focus**
- Deploy-rs integration project (nearly complete)
- Guile home lab tooling migration (early phase)
```mermaid ```mermaid
graph TB graph TB
subgraph "Development Environment" subgraph "Development Environment"
@ -50,24 +135,31 @@ graph TB
## Key Integration Benefits ## Key Integration Benefits
### For Individual Developers ### For Individual Developers
- **Context-Aware AI**: AI understands your specific home lab setup and coding patterns - **Context-Aware AI**: AI understands your specific home lab setup and coding patterns
- **Intelligent Task Management**: Automated project breakdown with dependency tracking - **Intelligent Task Management**: Automated project breakdown with dependency tracking
- **Seamless Workflow**: All assistance integrated directly into development environment - **Seamless Workflow**: All assistance integrated directly into development environment
- **Privacy-First**: Complete local processing with no external data sharing - **Privacy-First**: Complete local processing with no external data sharing
### For Fullstack Development ### For Fullstack Development
- **Architecture Guidance**: AI suggests tech stacks optimized for home lab deployment - **Architecture Guidance**: AI suggests tech stacks optimized for home lab deployment
- **Infrastructure Integration**: Automatic NixOS service module generation - **Infrastructure Integration**: Automatic NixOS service module generation
- **Development Acceleration**: 50-70% faster project setup and implementation - **Development Acceleration**: 50-70% faster project setup and implementation
- **Quality Assurance**: Consistent patterns and best practices enforcement - **Quality Assurance**: Consistent patterns and best practices enforcement
## Implementation Phases ## Implementation Phases - Status Update
### Phase 1: Foundation Setup (Weeks 1-2) - ⏳ **PENDING**
### Phase 1: Foundation Setup (Weeks 1-2)
**Objective**: Establish basic RAG functionality with local processing **Objective**: Establish basic RAG functionality with local processing
**Tasks**: **Status**: Not started - requires implementation
**Remaining Tasks**:
1. **Environment Preparation** 1. **Environment Preparation**
```bash ```bash
# Create RAG workspace # Create RAG workspace
mkdir -p /home/geir/Home-lab/services/rag mkdir -p /home/geir/Home-lab/services/rag
@ -95,20 +187,26 @@ graph TB
- Performance testing and optimization - Performance testing and optimization
**Deliverables**: **Deliverables**:
- ✅ Functional RAG system querying home lab docs
- ✅ Local vector database with all documentation indexed - [ ] Functional RAG system querying home lab docs
- ✅ Basic Python API for RAG queries - [ ] Local vector database with all documentation indexed
- ✅ Performance benchmarks and optimization report - [ ] Basic Python API for RAG queries
- [ ] Performance benchmarks and optimization report
**Success Criteria**: **Success Criteria**:
- Query response time < 2 seconds - Query response time < 2 seconds
- Relevant document retrieval accuracy > 85% - Relevant document retrieval accuracy > 85%
- System runs without external API dependencies - System runs without external API dependencies
### Phase 2: MCP Integration (Weeks 3-4) ### Phase 2: MCP Integration (Weeks 3-4) - ⏳ **PENDING**
**Objective**: Enable GitHub Copilot and Claude Desktop to access RAG system **Objective**: Enable GitHub Copilot and Claude Desktop to access RAG system
**Tasks**: **Status**: Architecture designed, implementation needed
**Remaining Tasks**:
1. **MCP Server Development** 1. **MCP Server Development**
- Implement FastMCP server with RAG integration - Implement FastMCP server with RAG integration
- Create MCP tools for document querying - Create MCP tools for document querying
@ -116,6 +214,7 @@ graph TB
- Implement proper error handling and logging - Implement proper error handling and logging
2. **Tool Development** 2. **Tool Development**
```python ```python
# Key MCP tools to implement: # Key MCP tools to implement:
@mcp.tool() @mcp.tool()
@ -138,109 +237,103 @@ graph TB
- Document integration setup for team members - Document integration setup for team members
**Deliverables**: **Deliverables**:
- ✅ Functional MCP server exposing RAG capabilities
- ✅ GitHub Copilot integration in VS Code/Cursor - [ ] Functional MCP server exposing RAG capabilities
- ✅ Claude Desktop integration for project discussions - [ ] GitHub Copilot integration in VS Code/Cursor
- ✅ Comprehensive testing suite for MCP functionality - [ ] Claude Desktop integration for project discussions
- [ ] Comprehensive testing suite for MCP functionality
**Success Criteria**: **Success Criteria**:
- AI assistants can query home lab documentation seamlessly - AI assistants can query home lab documentation seamlessly
- Response accuracy maintains >85% relevance - Response accuracy maintains >85% relevance
- Integration setup time < 30 minutes for new developers - Integration setup time < 30 minutes for new developers
### Phase 3: NixOS Service Integration (Weeks 5-6) ### Phase 3: NixOS Service Integration (Weeks 5-6) - 🔧 **PARTIALLY COMPLETE**
**Objective**: Deploy RAG+MCP as production services in home lab **Objective**: Deploy RAG+MCP as production services in home lab
**Tasks**: **Status**: NixOS module exists, needs deployment and testing
1. **NixOS Module Development**
```nix
# Create modules/services/rag.nix
services.homelab-rag = {
enable = true;
port = 8080;
dataDir = "/var/lib/rag";
enableMCP = true;
mcpPort = 8081;
};
```
2. **Service Configuration** **Completed Tasks**:
- Systemd service definitions for RAG and MCP - ✅ NixOS module development (`rag-taskmaster.nix`)
- User isolation and security configuration - ✅ Service configuration templates
- Automatic startup and restart policies - ✅ User isolation and security configuration
- Integration with existing monitoring
3. **Deployment and Testing** **Remaining Tasks**:
2. **Deployment and Testing**
- Deploy to grey-area server - Deploy to grey-area server
- Configure reverse proxy for web access - Configure reverse proxy for web access
- Set up SSL certificates and security - Set up SSL certificates and security
- Performance testing under production load - Performance testing under production load
3. **Integration with Existing Infrastructure**
- Add to machine configurations
- Configure firewall rules
- Set up monitoring integration
- Create backup procedures
**Deliverables**: **Deliverables**:
- ✅ Production-ready NixOS service modules - ✅ Production-ready NixOS service modules
- ✅ Automated deployment process - [ ] Automated deployment process
- ✅ Monitoring and alerting integration - [ ] Monitoring and alerting integration
- ✅ Security audit and configuration - [ ] Security audit and configuration
**Success Criteria**: **Success Criteria**:
- Services start automatically on system boot - Services start automatically on system boot
- 99.9% uptime over testing period - 99.9% uptime over testing period
- Security best practices implemented and verified - Security best practices implemented and verified
### Phase 4: Task Master AI Integration (Weeks 7-10) ### Phase 4: Task Master AI Integration (Weeks 7-10) - ✅ **LARGELY COMPLETE**
**Objective**: Add intelligent project management capabilities **Objective**: Add intelligent project management capabilities
**Tasks**: **Status**: Core functionality complete, bridge integration needed
1. **Task Master Installation**
```bash **Completed Tasks**:
# Clone and set up Task Master - ✅ Task Master installation and packaging
cd /home/geir/Home-lab/services - ✅ Ollama integration configuration
git clone https://github.com/eyaltoledano/claude-task-master.git taskmaster - ✅ MCP server with 25+ tools
cd taskmaster && npm install - ✅ VS Code/Cursor integration
- ✅ Project initialization and management
# Initialize for home lab integration - ✅ Active project tracking (deploy-rs, Guile tooling)
npx task-master init --yes \
--name "Home Lab Development" \ **Remaining Tasks**:
--description "NixOS-based home lab and fullstack development projects"
```
2. **MCP Bridge Development** 2. **MCP Bridge Development**
- Create Task Master MCP bridge service - Create Task Master + RAG MCP bridge service
- Implement project management tools for MCP - Implement cross-service intelligence
- Add AI-enhanced task analysis capabilities - Add AI-enhanced task analysis with document context
- Integrate with existing RAG system for context
3. **Enhanced AI Capabilities** 3. **Enhanced AI Capabilities**
```python - Integrate RAG context into task suggestions
# Key Task Master MCP tools: - Add infrastructure-aware task generation
@task_master_mcp.tool() - Implement fullstack workflow optimization
def create_project_from_description(project_description: str) -> str:
"""Create new Task Master project from natural language description"""
@task_master_mcp.tool()
def get_next_development_task() -> str:
"""Get next task with AI-powered implementation guidance"""
@task_master_mcp.tool()
def suggest_fullstack_architecture(requirements: str) -> str:
"""Suggest architecture based on home lab constraints"""
```
**Deliverables**: **Deliverables**:
- ✅ Integrated Task Master AI system - ✅ Integrated Task Master AI system
- ✅ MCP bridge connecting Task Master to AI assistants - [ ] MCP bridge connecting Task Master to RAG system
- ✅ Enhanced project management capabilities - ✅ Enhanced project management capabilities
- Fullstack development workflow optimization - [ ] Fullstack development workflow optimization
**Success Criteria**: **Success Criteria**:
- AI can create and manage complex development projects
- Task breakdown accuracy >80% for typical projects
- Development velocity improvement >50%
### Phase 5: Advanced Features (Weeks 11-12) - ✅ AI can create and manage complex development projects
- ✅ Task breakdown accuracy >80% for typical projects
- [ ] Development velocity improvement >50% (pending RAG integration)
### Phase 5: Advanced Features (Weeks 11-12) - ⏳ **PLANNED**
**Objective**: Implement advanced AI assistance for fullstack development **Objective**: Implement advanced AI assistance for fullstack development
**Status**: Dependent on completing Phase 1-3
**Tasks**: **Tasks**:
1. **Cross-Service Intelligence** 1. **Cross-Service Intelligence**
- Implement intelligent connections between RAG and Task Master - Implement intelligent connections between RAG and Task Master
- Add code pattern recognition and suggestion - Add code pattern recognition and suggestion
@ -248,6 +341,7 @@ graph TB
- Develop project template generation - Develop project template generation
2. **Fullstack-Specific Tools** 2. **Fullstack-Specific Tools**
```python ```python
# Advanced MCP tools: # Advanced MCP tools:
@mcp.tool() @mcp.tool()
@ -270,12 +364,14 @@ graph TB
- Create monitoring dashboards - Create monitoring dashboards
**Deliverables**: **Deliverables**:
- ✅ Advanced AI assistance capabilities
- ✅ Fullstack development optimization tools - [ ] Advanced AI assistance capabilities
- ✅ Performance monitoring and optimization - [ ] Fullstack development optimization tools
- ✅ Comprehensive documentation and training materials - [ ] Performance monitoring and optimization
- [ ] Comprehensive documentation and training materials
**Success Criteria**: **Success Criteria**:
- Advanced tools demonstrate clear value in development workflow - Advanced tools demonstrate clear value in development workflow
- System performance meets production requirements - System performance meets production requirements
- Developer adoption rate >90% for new projects - Developer adoption rate >90% for new projects
@ -283,6 +379,7 @@ graph TB
## Resource Requirements ## Resource Requirements
### Hardware Requirements ### Hardware Requirements
| Component | Current | Recommended | Notes | | Component | Current | Recommended | Notes |
|-----------|---------|-------------|-------| |-----------|---------|-------------|-------|
| **RAM** | 12GB available | 16GB+ | For vector embeddings and model loading | | **RAM** | 12GB available | 16GB+ | For vector embeddings and model loading |
@ -291,6 +388,7 @@ graph TB
| **Network** | Local | 1Gbps+ | For real-time AI assistance | | **Network** | Local | 1Gbps+ | For real-time AI assistance |
### Software Dependencies ### Software Dependencies
| Service | Version | Purpose | | Service | Version | Purpose |
|---------|---------|---------| |---------|---------|---------|
| **Python** | 3.10+ | RAG implementation and MCP servers | | **Python** | 3.10+ | RAG implementation and MCP servers |
@ -303,16 +401,19 @@ graph TB
### Technical Risks ### Technical Risks
**Risk**: Vector database corruption or performance degradation **Risk**: Vector database corruption or performance degradation
- **Probability**: Medium - **Probability**: Medium
- **Impact**: High - **Impact**: High
- **Mitigation**: Regular backups, performance monitoring, automated rebuilding procedures - **Mitigation**: Regular backups, performance monitoring, automated rebuilding procedures
**Risk**: MCP integration breaking with AI tool updates **Risk**: MCP integration breaking with AI tool updates
- **Probability**: Medium - **Probability**: Medium
- **Impact**: Medium - **Impact**: Medium
- **Mitigation**: Version pinning, comprehensive testing, fallback procedures - **Mitigation**: Version pinning, comprehensive testing, fallback procedures
**Risk**: Task Master AI integration complexity **Risk**: Task Master AI integration complexity
- **Probability**: Medium - **Probability**: Medium
- **Impact**: Medium - **Impact**: Medium
- **Mitigation**: Phased implementation, extensive testing, community support - **Mitigation**: Phased implementation, extensive testing, community support
@ -320,11 +421,13 @@ graph TB
### Operational Risks ### Operational Risks
**Risk**: Resource constraints affecting system performance **Risk**: Resource constraints affecting system performance
- **Probability**: Medium - **Probability**: Medium
- **Impact**: Medium - **Impact**: Medium
- **Mitigation**: Performance monitoring, resource optimization, hardware upgrade planning - **Mitigation**: Performance monitoring, resource optimization, hardware upgrade planning
**Risk**: Complexity overwhelming single developer maintenance **Risk**: Complexity overwhelming single developer maintenance
- **Probability**: Low - **Probability**: Low
- **Impact**: High - **Impact**: High
- **Mitigation**: Comprehensive documentation, automation, community engagement - **Mitigation**: Comprehensive documentation, automation, community engagement
@ -332,96 +435,101 @@ graph TB
## Success Metrics ## Success Metrics
### Development Velocity ### Development Velocity
- **Target**: 50-70% faster project setup and planning - **Target**: 50-70% faster project setup and planning
- **Measurement**: Time from project idea to first deployment - **Measurement**: Time from project idea to first deployment
- **Baseline**: Current manual process timing - **Baseline**: Current manual process timing
### Code Quality ### Code Quality
- **Target**: 90% adherence to home lab best practices - **Target**: 90% adherence to home lab best practices
- **Measurement**: Code review metrics, automated quality checks - **Measurement**: Code review metrics, automated quality checks
- **Baseline**: Current code quality assessments - **Baseline**: Current code quality assessments
### System Performance ### System Performance
- **Target**: <2 second response time for AI queries - **Target**: <2 second response time for AI queries
- **Measurement**: Response time monitoring, user experience surveys - **Measurement**: Response time monitoring, user experience surveys
- **Baseline**: Current manual documentation lookup time - **Baseline**: Current manual documentation lookup time
### Knowledge Management ### Knowledge Management
- **Target**: 95% question answerability from home lab docs - **Target**: 95% question answerability from home lab docs
- **Measurement**: Query success rate, user satisfaction - **Measurement**: Query success rate, user satisfaction
- **Baseline**: Current documentation effectiveness - **Baseline**: Current documentation effectiveness
## Deployment Schedule ## Deployment Schedule - Updated Status
### Timeline Overview - Current State
### Timeline Overview
```mermaid ```mermaid
gantt gantt
title RAG + MCP + Task Master Implementation title RAG + MCP + Task Master Implementation - Status Update
dateFormat YYYY-MM-DD dateFormat YYYY-MM-DD
section Phase 1 section Phase 1
RAG Foundation :p1, 2024-01-01, 14d RAG Foundation :active, p1, 2025-06-16, 14d
Testing & Optimization :14d Testing & Optimization :14d
section Phase 2 section Phase 2
MCP Integration :p2, after p1, 14d MCP Integration :p2, after p1, 14d
Client Setup :7d Client Setup :7d
section Phase 3 section Phase 3
NixOS Services :p3, after p2, 14d NixOS Services :p3, after p2, 7d
Production Deploy :7d Production Deploy :7d
section Phase 4 section Phase 4
Task Master Setup :p4, after p3, 14d Task Master Setup :done, p4, 2025-01-01, 2025-06-15
Bridge Development :14d Bridge Development :after p3, 14d
section Phase 5 section Phase 5
Advanced Features :p5, after p4, 14d Advanced Features :p5, after p4, 14d
Documentation :7d Documentation :7d
``` ```
### Weekly Milestones ### Milestone Status Update
**Week 1-2**: Foundation **✅ Completed (Jan-June 2025)**: Task Master Foundation
- [ ] RAG system functional
- [ ] Local documentation indexed - ✅ Task Master AI packaged and installed
- ✅ Ollama integration configured
- ✅ MCP server with full tool suite operational
- ✅ VS Code/Cursor integration working
- ✅ Active project management (2 projects running)
- ✅ NixOS service module development
**🔄 Current Week (June 16-23, 2025)**: RAG Foundation
- [ ] RAG system implementation
- [ ] Local documentation indexing
- [ ] Basic query interface working - [ ] Basic query interface working
**Week 3-4**: MCP Integration **⏳ Next 2-4 Weeks**: MCP Integration & Deployment
- [ ] MCP server deployed
- [ ] GitHub Copilot integration
- [ ] Claude Desktop setup
**Week 5-6**: Production Services - [ ] RAG MCP server development
- [ ] NixOS modules created - [ ] Production service deployment
- [ ] Services deployed to grey-area - [ ] Cross-service integration testing
- [ ] Monitoring configured
**Week 7-8**: Task Master Core **📅 Target Completion**: August 2025
- [ ] Task Master installed
- [ ] Basic MCP bridge functional
- [ ] Project management integration
**Week 9-10**: Enhanced AI - [ ] Full RAG + Task Master integration
- [ ] Advanced MCP tools - [ ] Advanced AI workflow optimization
- [ ] Cross-service intelligence - [ ] Complete documentation and training
- [ ] Fullstack workflow optimization
**Week 11-12**: Production Ready
- [ ] Performance optimization
- [ ] Comprehensive testing
- [ ] Documentation complete
## Maintenance and Evolution ## Maintenance and Evolution
### Regular Maintenance Tasks ### Regular Maintenance Tasks
- **Weekly**: Monitor system performance and resource usage - **Weekly**: Monitor system performance and resource usage
- **Monthly**: Update vector database with new documentation - **Monthly**: Update vector database with new documentation
- **Quarterly**: Review and optimize AI prompts and responses - **Quarterly**: Review and optimize AI prompts and responses
- **Annually**: Major version updates and feature enhancements - **Annually**: Major version updates and feature enhancements
### Evolution Roadmap ### Evolution Roadmap
- **Q2 2024**: Multi-user support and team collaboration features - **Q2 2024**: Multi-user support and team collaboration features
- **Q3 2024**: Integration with additional AI models and services - **Q3 2024**: Integration with additional AI models and services
- **Q4 2024**: Advanced analytics and project insights - **Q4 2024**: Advanced analytics and project insights
- **Q1 2025**: Community templates and shared knowledge base - **Q1 2025**: Community templates and shared knowledge base
### Community Engagement ### Community Engagement
- **Documentation**: Comprehensive guides for setup and usage - **Documentation**: Comprehensive guides for setup and usage
- **Templates**: Shareable project templates and configurations - **Templates**: Shareable project templates and configurations
- **Contributions**: Open source components for community use - **Contributions**: Open source components for community use
@ -431,4 +539,40 @@ gantt
This implementation roadmap provides a comprehensive path to creating an intelligent development environment that combines the power of RAG, MCP, and Task Master AI. The system will transform how you approach fullstack development in your home lab, providing AI assistance that understands your infrastructure, manages your projects intelligently, and accelerates your development velocity while maintaining complete privacy and control. This implementation roadmap provides a comprehensive path to creating an intelligent development environment that combines the power of RAG, MCP, and Task Master AI. The system will transform how you approach fullstack development in your home lab, providing AI assistance that understands your infrastructure, manages your projects intelligently, and accelerates your development velocity while maintaining complete privacy and control.
The phased approach ensures manageable implementation while delivering value at each stage. Success depends on careful attention to performance optimization, thorough testing, and comprehensive documentation to support long-term maintenance and evolution. ### **Current Achievement Status**
As of June 2025, the project has made significant progress:
- **✅ Task Master AI**: Fully operational with MCP integration and VS Code support
- **✅ Infrastructure Foundation**: NixOS service modules implemented and ready for deployment
- **✅ Active Project Management**: Successfully managing multiple development projects
- **⏳ RAG Implementation**: Core components designed but not yet implemented
- **⏳ Production Deployment**: Ready for deployment pending RAG completion
### **Next Immediate Steps (Priority Order)**
1. **Implement RAG Foundation** (Phase 1)
- Set up document processing pipeline
- Create vector database with home lab documentation
- Implement basic query interface
2. **Deploy RAG MCP Server** (Phase 2)
- Create MCP server for document queries
- Integrate with existing VS Code/Cursor setup
- Test AI assistant document access
3. **Production Deployment** (Phase 3)
- Deploy services to grey-area server
- Configure monitoring and security
- Establish backup procedures
4. **Cross-Service Integration** (Phase 5)
- Connect RAG and Task Master systems
- Implement intelligent task suggestions with documentation context
- Add fullstack workflow optimization
### **Success Trajectory**
The phased approach ensures manageable implementation while delivering value at each stage. With Task Master AI already providing significant project management capabilities, completing the RAG integration will create a truly intelligent development environment that understands both your project goals and infrastructure context.
Success depends on careful attention to performance optimization, thorough testing, and comprehensive documentation to support long-term maintenance and evolution. The foundation is solid - the remaining work will complete the intelligent development ecosystem envisioned in this roadmap.

View file

View file

@ -0,0 +1,663 @@
# RAG Technology Comparison: Guile vs Python Implementation Analysis
## Executive Summary
This document presents a comprehensive analysis of implementing Retrieval Augmented Generation (RAG) solutions, comparing the feasibility of using Guile Scheme versus the standard Python ecosystem. Based on extensive research of current RAG technologies, vector databases, and language capabilities, this analysis provides strategic recommendations for RAG implementation in a self-hosted home lab environment.
**Key Findings:**
- **Python RAG ecosystem**: Mature, comprehensive, production-ready with extensive library support
- **Guile RAG potential**: Theoretically possible but requires significant custom development
- **Recommendation**: Hybrid approach leveraging Python's RAG maturity with Guile for system integration
- **Implementation strategy**: Use Python for RAG core, Guile for MCP server and infrastructure management
## Table of Contents
1. [RAG Technology Overview](#rag-technology-overview)
2. [Python RAG Ecosystem Analysis](#python-rag-ecosystem-analysis)
3. [Guile RAG Feasibility Assessment](#guile-rag-feasibility-assessment)
4. [Technology Stack Comparison](#technology-stack-comparison)
5. [Implementation Recommendations](#implementation-recommendations)
6. [Integration Strategies](#integration-strategies)
7. [Performance Considerations](#performance-considerations)
8. [Conclusion](#conclusion)
## RAG Technology Overview
### What is RAG?
Retrieval Augmented Generation (RAG) is a hybrid AI approach that combines:
1. **Information Retrieval**: Finding relevant documents from a knowledge base
2. **Generation**: Using LLMs to generate responses based on retrieved context
3. **Vector Search**: Semantic similarity search using embeddings
### Core RAG Components
```mermaid
graph TD
A[User Query] --> B[Query Embedding]
B --> C[Vector Search]
C --> D[Document Retrieval]
D --> E[Context Assembly]
E --> F[LLM Generation]
F --> G[Response]
H[Document Corpus] --> I[Text Chunking]
I --> J[Embedding Generation]
J --> K[Vector Store]
K --> C
```
### Essential RAG Technologies
1. **Vector Databases**: ChromaDB, Qdrant, FAISS, pgvector
2. **Embedding Models**: OpenAI, HuggingFace Transformers, Sentence Transformers
3. **LLMs**: OpenAI GPT, Anthropic Claude, Local models (Ollama)
4. **Orchestration**: LangChain, LlamaIndex, Haystack
## Python RAG Ecosystem Analysis
### Mature Python Libraries
#### LangChain Framework
```python
from langchain_community.document_loaders import DirectoryLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_chroma import Chroma
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_core.vectorstores import InMemoryVectorStore
# Document processing pipeline
loader = DirectoryLoader("/home/geir/Home-lab", glob="**/*.md")
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
splits = text_splitter.split_documents(docs)
# Local embeddings (no API required)
embeddings = SentenceTransformerEmbeddings(
model_name="all-MiniLM-L6-v2"
)
# Vector store initialization
vectorstore = Chroma.from_documents(
documents=splits,
embedding=embeddings,
persist_directory="./chroma_db"
)
```
#### ChromaDB Vector Database
```python
import chromadb
from chromadb.utils import embedding_functions
# Initialize ChromaDB client
client = chromadb.PersistentClient(path="./chroma_db")
# Create collection with embeddings
collection = client.create_collection(
name="homelab_docs",
embedding_function=embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="all-MiniLM-L6-v2"
)
)
# Add documents
collection.add(
documents=["Document content..."],
metadatas=[{"source": "file.md"}],
ids=["doc1"]
)
# Query collection
results = collection.query(
query_texts=["How to deploy NixOS?"],
n_results=5
)
```
### Python RAG Advantages
1. **Mature Ecosystem**: 200+ specialized libraries
2. **Production Ready**: Battle-tested in enterprise environments
3. **Extensive Documentation**: Comprehensive guides and examples
4. **Active Community**: Large developer base and support
5. **Performance Optimized**: Highly optimized C extensions
6. **API Integration**: Native support for all major AI services
### Python Library Ecosystem
| Category | Libraries | Maturity | Use Case |
|----------|-----------|----------|----------|
| **Vector Stores** | ChromaDB, Qdrant, FAISS, Pinecone | ⭐⭐⭐⭐⭐ | Document storage and retrieval |
| **Embeddings** | SentenceTransformers, OpenAI, Cohere | ⭐⭐⭐⭐⭐ | Text vectorization |
| **LLM Integration** | OpenAI, Anthropic, HuggingFace | ⭐⭐⭐⭐⭐ | Text generation |
| **Orchestration** | LangChain, LlamaIndex, Haystack | ⭐⭐⭐⭐⭐ | RAG pipeline management |
| **Text Processing** | spaCy, NLTK, tiktoken | ⭐⭐⭐⭐⭐ | Document preprocessing |
## Guile RAG Feasibility Assessment
### Current Guile Ecosystem for RAG
#### Available Libraries Analysis
**Vector Operations**: Limited
```scheme
;; No native vector database libraries
;; Would require:
;; 1. Custom HNSW implementation
;; 2. Foreign Function Interface (FFI) to C libraries
;; 3. Manual vector operations using SRFI libraries
```
**HTTP/API Integration**: Good
```scheme
(use-modules (web client) (json))
;; HTTP requests for embeddings APIs
(define (get-embeddings text)
(let* ((response (http-request
"https://api.openai.com/v1/embeddings"
#:method 'POST
#:headers `((authorization . "Bearer API_KEY")
(content-type . "application/json"))
#:body (scm->json-string
`((input . ,text)
(model . "text-embedding-ada-002"))))))
(json-string->scm (response-body response))))
```
**JSON Processing**: Excellent
```scheme
(use-modules (json))
;; JSON handling is mature and well-supported
(define machine-config
`(("embeddings" . #(0.1 0.2 0.3))
("metadata" . (("source" . "nix-config")))
("text" . "NixOS configuration for grey-area")))
(scm->json machine-config #:pretty #t)
```
### Guile RAG Implementation Challenges
#### 1. Vector Database Operations
**Challenge**: No native vector database libraries
```scheme
;; Would need to implement:
(define (cosine-similarity vec1 vec2)
"Calculate cosine similarity between vectors"
(let ((dot-product (fold + 0 (map * vec1 vec2)))
(magnitude1 (sqrt (fold + 0 (map square vec1))))
(magnitude2 (sqrt (fold + 0 (map square vec2)))))
(/ dot-product (* magnitude1 magnitude2))))
(define (nearest-neighbors query-vector vectors k)
"Find k nearest neighbors using brute force"
(take (sort vectors
(lambda (a b)
(< (cosine-similarity query-vector (car a))
(cosine-similarity query-vector (car b)))))
k))
```
#### 2. Embedding Generation
**Limited Options**:
- No native embedding models
- Must use external APIs or FFI to Python/C libraries
- Performance overhead for large document processing
```scheme
(use-modules (system foreign))
;; FFI to Python embedding libraries
(define python-embedding-lib
(dynamic-link "libpython-embeddings"))
(define embed-text
(pointer->procedure '*
(dynamic-func "embed_text" python-embedding-lib)
(list '*)))
```
#### 3. Document Processing
**Basic text processing possible**:
```scheme
(use-modules (ice-9 regex) (srfi srfi-1))
(define (chunk-text text chunk-size overlap)
"Basic text chunking implementation"
(let ((words (string-split text #\space)))
(let loop ((remaining words) (chunks '()))
(if (< (length remaining) chunk-size)
(reverse chunks)
(let ((chunk (take remaining chunk-size))
(next-start (drop remaining (- chunk-size overlap))))
(loop next-start
(cons (string-join chunk " ") chunks)))))))
```
### Guile Strengths for RAG
1. **System Integration**: Excellent for infrastructure management
2. **Configuration Management**: Natural fit for home lab administration
3. **MCP Server**: Well-suited for protocol implementation
4. **REPL Development**: Interactive development and debugging
5. **Homoiconicity**: Code-as-data enables powerful metaprogramming
## Technology Stack Comparison
### Python RAG Stack
```python
# Production-ready RAG implementation
from langchain_chroma import Chroma
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
class ProductionRAG:
def __init__(self):
self.embeddings = SentenceTransformerEmbeddings(
model_name="all-MiniLM-L6-v2"
)
self.vectorstore = Chroma(
persist_directory="./chroma_db",
embedding_function=self.embeddings
)
self.llm = ChatOpenAI(model="gpt-3.5-turbo")
def query(self, question: str) -> str:
docs = self.vectorstore.similarity_search(question, k=5)
context = "\n".join([doc.page_content for doc in docs])
prompt = ChatPromptTemplate.from_template("""
Answer the question based on the context:
Context: {context}
Question: {question}
""")
response = self.llm.invoke(
prompt.format(context=context, question=question)
)
return response.content
```
### Hypothetical Guile RAG Stack
```scheme
;; Theoretical Guile RAG implementation
(use-modules (web client) (json) (ice-9 threads))
(define-class <guile-rag> ()
(embeddings-cache #:init-value (make-hash-table))
(documents #:init-value '())
(llm-client #:init-value #f))
(define-method (add-document (rag <guile-rag>) text metadata)
"Add document to RAG system"
(let ((embedding (get-embedding-via-api text)))
(slot-set! rag 'documents
(cons `((text . ,text)
(metadata . ,metadata)
(embedding . ,embedding))
(slot-ref rag 'documents)))))
(define-method (query (rag <guile-rag>) question)
"Query RAG system"
(let* ((query-embedding (get-embedding-via-api question))
(relevant-docs (find-similar-docs rag query-embedding))
(context (string-join (map (lambda (doc)
(assoc-ref doc 'text))
relevant-docs) "\n"))
(prompt (format #f "Context: ~a\nQuestion: ~a" context question)))
(call-llm-api prompt)))
```
### Comparison Matrix
| Aspect | Python | Guile | Winner |
|--------|--------|-------|--------|
| **Vector Operations** | ⭐⭐⭐⭐⭐ Native libraries | ⭐⭐ Custom implementation | Python |
| **Embedding Models** | ⭐⭐⭐⭐⭐ SentenceTransformers | ⭐⭐ API calls only | Python |
| **Development Speed** | ⭐⭐⭐⭐⭐ Rapid prototyping | ⭐⭐⭐ Custom development | Python |
| **System Integration** | ⭐⭐⭐ Good | ⭐⭐⭐⭐⭐ Excellent | Guile |
| **MCP Server** | ⭐⭐⭐ Adequate | ⭐⭐⭐⭐⭐ Natural fit | Guile |
| **Home Lab Management** | ⭐⭐⭐ Scripting | ⭐⭐⭐⭐⭐ Native integration | Guile |
| **Documentation** | ⭐⭐⭐⭐⭐ Extensive | ⭐⭐ Limited | Python |
| **Community Support** | ⭐⭐⭐⭐⭐ Large | ⭐⭐ Niche | Python |
## Implementation Recommendations
### Hybrid Architecture Approach
**Recommended Strategy**: Leverage both languages' strengths
```mermaid
graph TD
A[User Query] --> B[Guile MCP Server]
B --> C[Python RAG Service]
C --> D[ChromaDB Vector Store]
C --> E[SentenceTransformers]
C --> F[Ollama LLM]
F --> G[Response]
G --> B
B --> A
H[Home Lab Docs] --> I[Python Processing]
I --> J[Text Chunking]
J --> K[Embedding Generation]
K --> D
L[Infrastructure State] --> M[Guile Context Provider]
M --> B
```
### Implementation Architecture
#### Python RAG Core Service
```python
# rag_service.py - Core RAG functionality
from fastapi import FastAPI
from langchain_chroma import Chroma
from langchain_community.embeddings import SentenceTransformerEmbeddings
app = FastAPI()
class RAGService:
def __init__(self):
self.embeddings = SentenceTransformerEmbeddings(
model_name="all-MiniLM-L6-v2"
)
self.vectorstore = Chroma(
persist_directory="/var/lib/rag/chroma_db",
embedding_function=self.embeddings
)
async def query(self, question: str, context: dict = None):
# Retrieve relevant documents
docs = self.vectorstore.similarity_search(question, k=5)
# Add home lab context from Guile
if context:
infrastructure_context = self.format_infrastructure_context(context)
docs.append(infrastructure_context)
return self.generate_response(question, docs)
@app.post("/query")
async def query_rag(request: dict):
question = request.get("question")
context = request.get("context", {})
result = await rag_service.query(question, context)
return {"response": result}
rag_service = RAGService()
```
#### Guile MCP Server Bridge
```scheme
;; rag-mcp-bridge.scm - MCP server with RAG integration
(use-modules (web client) (json) (lab machines))
(define (call-rag-service question context)
"Call Python RAG service with home lab context"
(let* ((infrastructure-state (get-current-infrastructure-state))
(request-body (scm->json-string
`((question . ,question)
(context . ((infrastructure . ,infrastructure-state)
(machines . ,(list-machines))
(deployment-status . ,(get-deployment-status)))))))
(response (http-post "http://localhost:8000/query"
#:headers '((content-type . "application/json"))
#:body request-body)))
(json-string->scm (response-body response))))
(define mcp-tools
`(((name . "query-homelab-knowledge")
(description . "Query home lab documentation and infrastructure knowledge")
(inputSchema . ,(json-schema
`((type . "object")
(properties . ((question (type . "string"))))
(required . ("question")))))
(handler . ,(lambda (args)
(let ((question (assoc-ref args 'question)))
(call-rag-service question (get-current-context))))))))
```
### NixOS Service Configuration
```nix
# modules/services/rag-service.nix
{ config, lib, pkgs, ... }:
with lib;
let
cfg = config.services.rag-service;
in {
options.services.rag-service = {
enable = mkEnableOption "RAG service for home lab";
port = mkOption {
type = types.port;
default = 8000;
description = "Port for RAG service";
};
embeddingModel = mkOption {
type = types.str;
default = "all-MiniLM-L6-v2";
description = "Sentence transformer model for embeddings";
};
};
config = mkIf cfg.enable {
systemd.services.rag-service = {
description = "RAG Service for Home Lab";
wantedBy = [ "multi-user.target" ];
after = [ "network.target" ];
serviceConfig = {
ExecStart = "${pkgs.python3.withPackages(ps: with ps; [
fastapi
uvicorn
langchain
langchain-chroma
sentence-transformers
])}/bin/python -m uvicorn rag_service:app --host 0.0.0.0 --port ${toString cfg.port}";
Restart = "always";
User = "rag";
Group = "rag";
StateDirectory = "rag";
WorkingDirectory = "/var/lib/rag";
};
};
users.users.rag = {
isSystemUser = true;
group = "rag";
home = "/var/lib/rag";
createHome = true;
};
users.groups.rag = {};
};
}
```
## Integration Strategies
### Strategy 1: API Bridge Pattern
**Implementation**: Python RAG service with Guile MCP bridge
**Advantages**:
- Leverages Python's mature RAG ecosystem
- Guile handles MCP protocol and infrastructure integration
- Clear separation of concerns
- Each component optimized for its strengths
**Architecture**:
```
[AI Assistant] → [Guile MCP Server] → [Python RAG API] → [ChromaDB]
[Home Lab Context]
```
### Strategy 2: Embedded Python Pattern
**Implementation**: Guile calls Python via subprocess or FFI
```scheme
(use-modules (ice-9 popen) (json))
(define (query-python-rag question)
"Call Python RAG system via subprocess"
(let* ((proc (open-output-pipe
"python3 -c \"
import sys, json
from rag_system import query_rag
question = json.loads(sys.stdin.read())
result = query_rag(question['text'])
print(json.dumps({'response': result}))
\""))
(input-data (scm->json-string `((text . ,question)))))
(display input-data proc)
(close-pipe proc)))
```
### Strategy 3: Message Queue Pattern
**Implementation**: Async communication via Redis/RabbitMQ
```scheme
;; Guile publishes queries, Python processes them
(use-modules (redis))
(define (async-rag-query question callback)
"Submit RAG query asynchronously"
(let ((query-id (uuid)))
(redis-publish "rag-queries"
(scm->json-string `((id . ,query-id)
(question . ,question)
(context . ,(get-current-context)))))
(redis-subscribe "rag-responses"
(lambda (response)
(when (equal? (assoc-ref response 'id) query-id)
(callback response))))))
```
## Performance Considerations
### Python RAG Performance
**Advantages**:
- Optimized C extensions for numerical operations
- Efficient vector operations with NumPy/SciPy
- Production-grade vector databases
- Batched embedding processing
**Benchmarks** (estimated):
- Document indexing: 1000 docs/minute
- Query response: <100ms for 10k documents
- Memory usage: ~2GB for 100k documents
### Guile Implementation Performance
**Challenges**:
- Interpreted execution for vector operations
- No native SIMD optimizations
- Custom algorithms vs optimized libraries
- API call overhead for embeddings
**Estimated Performance**:
- Document indexing: 100 docs/minute (10x slower)
- Query response: 500ms+ (5x slower)
- Memory usage: Similar or higher due to inefficiencies
### Hybrid Performance
**Best of Both Worlds**:
- Python handles compute-intensive RAG operations
- Guile manages lightweight MCP protocol
- Minimal communication overhead
- Each component optimized for its domain
## Conclusion
### Summary of Findings
1. **Python RAG Ecosystem**: Mature, production-ready, comprehensive
2. **Guile RAG Implementation**: Theoretically possible but impractical
3. **Hybrid Approach**: Optimal solution leveraging both languages' strengths
4. **Implementation Recommendation**: Python for RAG core, Guile for system integration
### Strategic Recommendation
**Adopt a hybrid architecture** that:
1. **Uses Python for RAG core functionality**:
- LangChain for orchestration
- ChromaDB for vector storage
- SentenceTransformers for embeddings
- FastAPI for service interface
2. **Uses Guile for infrastructure integration**:
- MCP server implementation
- Home lab context management
- Infrastructure state monitoring
- Configuration management
3. **Provides clean integration**:
- HTTP API between components
- JSON message format
- NixOS service management
- Unified deployment strategy
### Implementation Timeline
**Phase 1** (Week 1-2): Python RAG foundation
- Set up ChromaDB vector store
- Implement document processing pipeline
- Create basic FastAPI service
- Test with home lab documentation
**Phase 2** (Week 2-3): Guile MCP integration
- Implement MCP server in Guile
- Create RAG service bridge
- Add infrastructure context providers
- Test with VS Code/Claude
**Phase 3** (Week 3-4): Production deployment
- NixOS service configuration
- Monitoring and logging
- Performance optimization
- Documentation and testing
### Expected Benefits
1. **Rapid Development**: Leverage existing Python RAG libraries
2. **System Integration**: Natural Guile integration with home lab
3. **Maintainability**: Use each language for its strengths
4. **Scalability**: Production-ready Python RAG foundation
5. **Flexibility**: Easy to extend and modify components
### Risk Mitigation
1. **Component Isolation**: Failure in one component doesn't affect others
2. **Technology Diversity**: Not locked into single language ecosystem
3. **Migration Path**: Easy to replace components as ecosystem evolves
4. **Fallback Options**: Can fall back to pure Python if needed
This hybrid approach provides the best path forward for implementing RAG in your home lab environment, combining Python's mature RAG ecosystem with Guile's excellent system integration capabilities.