some work on sound anf noise suppression and research into netdata

This commit is contained in:
Geir Okkenhaug Jerstad 2025-06-19 21:15:24 +02:00
parent bc3d199cca
commit 076c38d829
4 changed files with 626 additions and 3 deletions

View file

@ -5,7 +5,9 @@ This directory contains per-user configurations and dotfiles for the Home-lab in
## Directory Organization
### `geir/`
Primary user configuration for geir:
- `user.nix` - NixOS user configuration (packages, groups, shell)
- `dotfiles/` - Literate programming dotfiles using org-mode
- `README.org` - Main literate configuration file
@ -14,7 +16,9 @@ Primary user configuration for geir:
- `editors/` - Editor configurations (neovim, vscode)
### Future Users
Additional user directories will follow the same pattern:
- `admin/` - Administrative user for system management
- `service/` - Service accounts for automation
- `guest/` - Temporary/guest user configurations
@ -22,21 +26,27 @@ Additional user directories will follow the same pattern:
## User Configuration Philosophy
### NixOS Integration
Each user has a `user.nix` file that defines:
- User account settings (shell, groups, home directory)
- User-specific packages
- System-level user configurations
- Integration with home lab services
### Literate Dotfiles
Each user's `dotfiles/README.org` serves as:
- Single source of truth for all user configurations
- Self-documenting setup with rationale
- Auto-tangling to generate actual dotfiles
- Version-controlled configuration history
### Multi-Machine Consistency
User configurations are designed to work across machines:
- congenital-optimist: Full development environment
- sleeper-service: Minimal server access
- Future machines: Consistent user experience
@ -44,7 +54,9 @@ User configurations are designed to work across machines:
## Dotfiles Structure
### `dotfiles/README.org`
Main literate configuration file containing:
- Shell configuration (zsh, starship, aliases)
- Editor configurations (emacs, neovim)
- Development tool settings
@ -52,6 +64,7 @@ Main literate configuration file containing:
- Machine-specific customizations
### Subdirectories
- `emacs/` - Generated Emacs configuration files
- `shell/` - Generated shell configuration files
- `editors/` - Generated editor configuration files
@ -59,6 +72,7 @@ Main literate configuration file containing:
## Usage Examples
### Importing User Configuration
```nix
# In machine configuration
imports = [
@ -67,12 +81,14 @@ imports = [
```
### Adding New User
1. Create user directory: `users/newuser/`
2. Copy and adapt `user.nix` template
3. Create `dotfiles/README.org` with user-specific configs
4. Import in machine configurations as needed
### Tangling Dotfiles
```bash
# From user's dotfiles directory
cd users/geir/dotfiles

View file

@ -0,0 +1,607 @@
# Netdata Research: Metrics Aggregation for Home Lab
*Research conducted June 19, 2025*
## Executive Summary
Netdata is a highly viable metrics aggregation solution for your home lab infrastructure. It offers real-time monitoring with per-second granularity, minimal resource usage, and excellent scalability through its Parent-Child architecture. The recent addition of a beta MCP (Model Context Protocol) server makes it particularly interesting for integration with AI tooling and your existing workflow.
## Key Advantages for Home Lab Use
### 1. **Real-Time Monitoring Excellence**
- **Per-second metrics collection** - True real-time visibility
- **1-second dashboard latency** - Instant feedback for troubleshooting
- **Zero sampling** - Complete data fidelity
- **800+ integrations** out of the box
### 2. **Resource Efficiency**
- **Most energy-efficient monitoring tool** according to University of Amsterdam study
- **40x better storage efficiency** compared to traditional solutions
- **22x faster responses** than alternatives
- **Uses only 15% of resources** compared to similar tools
### 3. **Perfect Home Lab Architecture**
- **Zero-configuration deployment** - Auto-discovers services
- **Distributed by design** - No centralized data collection required
- **Edge-based ML** - Anomaly detection runs locally on each node
- **Parent-Child streaming** - Centralize dashboards while keeping data local
### 4. **Advanced Features**
- **Built-in ML anomaly detection** - One model per metric, trained locally
- **Pre-configured alerts** - 400+ ready-to-use alert templates
- **Multiple notification channels** - Slack, Discord, email, PagerDuty, etc.
- **Export capabilities** - Prometheus, InfluxDB, Graphite integration
## Architecture Options for Home Lab
### Option 1: Standalone Deployment (Simple)
```
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Machine 1 │ │ Machine 2 │ │ Machine N │
│ (Netdata │ │ (Netdata │ │ (Netdata │
│ Agent) │ │ Agent) │ │ Agent) │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
└─────────────────────┼─────────────────────┘
┌─────────────────┐
│ Netdata Cloud │
│ (Optional) │
└─────────────────┘
```
**Benefits:**
- Simple setup and maintenance
- Each node retains its own data
- No single point of failure
- Perfect for learning and small deployments
### Option 2: Parent-Child Architecture (Recommended)
```
┌─────────────────┐
│ Netdata Parent │
│ (Central Hub) │
│ - Dashboards │
│ - Long retention│
│ - Alerts │
└─────────────────┘
┌──────────────┼──────────────┐
│ │ │
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Netdata Child │ │ Netdata Child │ │ Netdata Child │
│ (NixOS VMs) │ │ (Containers) │ │ (IoT devices) │
│ - Thin mode │ │ - Thin mode │ │ - Thin mode │
│ - Local buffer │ │ - Local buffer │ │ - Local buffer │
└─────────────────┘ └─────────────────┘ └─────────────────┘
```
**Benefits:**
- Centralized dashboards and alerting
- Extended retention on Parent node
- Reduced resource usage on Child nodes
- Better for production-like home lab setups
### Option 3: High Availability Cluster (Advanced)
```
┌─────────────────┐ ┌─────────────────┐
│ Netdata Parent 1│◄───►│ Netdata Parent 2│
│ (Primary) │ │ (Backup) │
└─────────────────┘ └─────────────────┘
│ │
┌────────┼───────────────────────┼────────┐
│ │ │ │
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│Child 1 │ │Child 2 │ │Child 3 │ │Child N │
└─────────┘ └─────────┘ └─────────┘ └─────────┘
```
**Benefits:**
- No single point of failure
- Automatic failover
- Load distribution
- Production-grade reliability
## Integration with Your NixOS Infrastructure
### NixOS Configuration
```nix
# In your NixOS configuration.nix
{
services.netdata = {
enable = true;
config = {
global = {
"default port" = "19999";
"memory mode" = "ram"; # For children
# "memory mode" = "save"; # For parents
};
# For Parent nodes
streaming = {
enabled = "yes";
"allow from" = "*";
"default memory mode" = "ram";
};
# For Child nodes
stream = {
enabled = "yes";
destination = "parent.yourdomain.local";
"api key" = "your-api-key";
};
};
};
# Open firewall for Netdata
networking.firewall.allowedTCPPorts = [ 19999 ];
}
```
### Deployment Strategy for Your Lab
1. **Reverse Proxy** (grey-area): Netdata Parent + Nginx reverse proxy
2. **Sleeper Service** (NFS): Netdata Child with storage monitoring
3. **Congenital Optimist**: Netdata Child with system monitoring
4. **VM workloads**: Netdata Children in thin mode
## MCP Server Integration (Beta Feature)
Netdata recently introduced an **MCP (Model Context Protocol) server in beta**. This is particularly relevant for your AI-integrated workflow:
### What It Offers
- **AI-powered metric analysis** through standardized MCP interface
- **Integration with Claude, ChatGPT, and other LLMs** for intelligent monitoring
- **Natural language queries** about your infrastructure metrics
- **Automated root cause analysis** using AI reasoning
- **Contextual alerting** with AI-generated insights
### Potential Use Cases
```bash
# Example MCP interactions (conceptual)
"What's causing high CPU on sleeper-service?"
"Show me network anomalies from the last hour"
"Compare current metrics to last week's baseline"
"Generate a performance report for grey-area"
```
### Integration with Your Existing MCP Setup
Since you're already using MCP servers (TaskMaster, Context7), adding Netdata's MCP server would create a powerful monitoring-AI pipeline:
```
Your Infrastructure → Netdata → MCP Server → AI Analysis → Insights
```
## Comparison with Alternatives
### vs. Prometheus + Grafana
| Feature | Netdata | Prometheus + Grafana |
|---------|---------|---------------------|
| Setup Complexity | Zero-config | Complex setup |
| Real-time Data | 1-second | 15-second minimum |
| Resource Usage | Very low | Higher |
| Built-in ML | Yes | No |
| Dashboards | Auto-generated | Manual creation |
| Storage Efficiency | 40x better | Standard |
### vs. Zabbix
| Feature | Netdata | Zabbix |
|---------|---------|---------|
| Agent Overhead | Minimal | Higher |
| Configuration | Auto-discovery | Manual setup |
| Scalability | Horizontal | Vertical |
| Modern UI | Yes | Traditional |
| Cloud Integration | Native | Limited |
### vs. DataDog/Commercial SaaS
| Feature | Netdata | Commercial SaaS |
|---------|---------|-----------------|
| Cost | Open Source | Expensive |
| Data Sovereignty | Local | Vendor-hosted |
| Customization | Full control | Limited |
| Lock-in Risk | None | High |
## Implementation Roadmap
### Phase 1: Basic Deployment (Week 1)
1. Deploy Netdata Parent on **grey-area**
2. Install Netdata Children on main nodes
3. Configure basic streaming
4. Set up reverse proxy for external access
### Phase 2: Integration (Week 2-3)
1. Configure alerts and notifications
2. Set up Prometheus export for existing tools
3. Integrate with your existing monitoring stack
4. Configure retention policies
### Phase 3: Advanced Features (Week 4+)
1. Enable MCP server (beta)
2. Set up high availability if needed
3. Custom dashboard creation
4. Advanced alert tuning
## Potential Challenges
### 1. **Learning Curve**
- New terminology (Parent/Child vs traditional)
- Different approach to metrics storage
- **Mitigation**: Excellent documentation and active community
### 2. **Beta MCP Server**
- Still in beta development
- Limited documentation
- **Mitigation**: Conservative adoption, wait for stability
### 3. **Integration Complexity**
- May need adaptation of existing monitoring workflows
- **Mitigation**: Gradual migration, parallel running during transition
## Resource Requirements
### Minimal Setup (Per Node)
- **CPU**: 1-2% of a single core
- **RAM**: 20-100MB depending on metrics count
- **Disk**: 100MB for agent + retention data
- **Network**: Minimal bandwidth for streaming
### Parent Node (Centralized)
- **CPU**: 2-4 cores for 10-20 children
- **RAM**: 2-4GB for extended retention
- **Disk**: 10-50GB depending on retention period
- **Network**: Higher bandwidth for ingesting streams
## Recommendations
### For Your Home Lab: **Strong Yes**
1. **Start with Parent-Child architecture** on grey-area as Parent
2. **Deploy gradually** - begin with critical nodes
3. **Integrate with existing Prometheus** via export
4. **Monitor MCP server development** for AI integration
5. **Consider as primary monitoring solution** due to superior efficiency
### Specific Benefits for Your Use Case
- **Perfect fit for NixOS** - declarative configuration
- **Complements your AI workflow** - MCP integration potential
- **Scales with lab growth** - from single nodes to complex topologies
- **Energy efficient** - important for home lab power consumption
- **Real-time visibility** - excellent for development and testing
## Next Steps
1. **Proof of Concept**: Deploy on grey-area as standalone
2. **Evaluate**: Run for 1-2 weeks alongside current monitoring
3. **Expand**: Add children nodes if satisfied
4. **Integrate**: Connect with existing toolchain
5. **MCP Beta**: Request early access to MCP server
## Conclusion
Netdata represents a modern, efficient approach to infrastructure monitoring that aligns well with your home lab's goals. Its combination of real-time capabilities, minimal resource usage, and emerging AI integration through MCP makes it an excellent choice for sophisticated home lab environments. The Parent-Child architecture provides enterprise-grade capabilities while maintaining the simplicity needed for home lab management.
The addition of MCP server support positions Netdata at the forefront of AI-integrated monitoring, making it particularly appealing given your existing investment in MCP-based tooling.
## References
- [Netdata GitHub Repository](https://github.com/netdata/netdata)
- [Netdata Documentation](https://learn.netdata.cloud/)
- [University of Amsterdam Energy Efficiency Study](https://www.ivanomalavolta.com/files/papers/ICSOC_2023.pdf)
- [Netdata vs Prometheus Comparison](https://www.netdata.cloud/blog/netdata-vs-prometheus-2025/)
- [Netdata MCP Server Documentation](https://github.com/netdata/netdata/blob/master/docs/mcp.md) (Beta)
## Netdata API for Custom Web Dashboards
Netdata provides a comprehensive REST API that makes it perfect for integrating with custom web dashboards. The API is exposed locally on each Netdata agent and can be used to fetch real-time metrics in various formats.
### API Overview
**Base URL**: `http://localhost:19999/api/v1/`
**Primary Endpoints**:
- `/api/v1/data` - Query time-series data
- `/api/v1/charts` - Get available charts
- `/api/v1/allmetrics` - Get all metrics in shell-friendly format
- `/api/v1/badge.svg` - Generate SVG badges
### Key API Features for Dashboard Integration
1. **Multiple Output Formats**
- JSON (default)
- CSV
- TSV
- JSONP
- Plain text
- Shell variables
2. **Real-Time Data Access**
- Per-second granularity
- Live streaming capabilities
- Historical data queries
3. **Flexible Query Parameters**
- Time range selection
- Data grouping and aggregation
- Dimension filtering
- Custom sampling intervals
### API Query Examples
#### Basic Data Query
```bash
# Get CPU system data for the last 60 seconds
curl "http://localhost:19999/api/v1/data?chart=system.cpu&after=-60&dimensions=system"
# Response format:
{
"api": 1,
"id": "system.cpu",
"name": "system.cpu",
"update_every": 1,
"first_entry": 1640995200,
"last_entry": 1640995260,
"before": 1640995260,
"after": 1640995200,
"dimension_names": ["guest_nice", "guest", "steal", "softirq", "irq", "system", "user", "nice", "iowait"],
"dimension_ids": ["guest_nice", "guest", "steal", "softirq", "irq", "system", "user", "nice", "iowait"],
"latest_values": [0, 0, 0, 0.502513, 0, 2.512563, 5.025126, 0, 0.502513],
"view_update_every": 1,
"dimensions": 9,
"points": 61,
"format": "json",
"result": {
"data": [
[1640995201, 0, 0, 0, 0.0025, 0, 0.0125, 0.025, 0, 0.0025],
[1640995202, 0, 0, 0, 0.005, 0, 0.0275, 0.0525, 0, 0.005]
// ... more data points
]
}
}
```
#### Available Charts Discovery
```bash
# Get all available charts
curl "http://localhost:19999/api/v1/charts"
# Returns JSON with all chart definitions including:
# - Chart IDs and names
# - Available dimensions
# - Update frequencies
# - Chart types and units
```
#### Memory Usage Example
```bash
# Get memory usage data with specific grouping
curl "http://localhost:19999/api/v1/data?chart=system.ram&after=-300&points=60&group=average"
```
#### Network Interface Metrics
```bash
# Get network traffic for specific interface
curl "http://localhost:19999/api/v1/data?chart=net.eth0&after=-60&dimensions=received,sent"
```
#### All Metrics in Shell Format
```bash
# Perfect for scripting and automation
curl "http://localhost:19999/api/v1/allmetrics"
# Example output:
NETDATA_SYSTEM_CPU_USER=2.5
NETDATA_SYSTEM_CPU_SYSTEM=1.2
NETDATA_SYSTEM_RAM_USED=4096
# ... all metrics as shell variables
```
### Advanced Query Parameters
| Parameter | Description | Example |
|-----------|-------------|---------|
| `chart` | Chart ID to query | `system.cpu` |
| `after` | Start time (unix timestamp or relative) | `-60` (60 seconds ago) |
| `before` | End time (unix timestamp or relative) | `-30` (30 seconds ago) |
| `points` | Number of data points to return | `100` |
| `group` | Grouping method | `average`, `max`, `min`, `sum` |
| `gtime` | Group time in seconds | `60` (1-minute averages) |
| `dimensions` | Specific dimensions to include | `user,system,iowait` |
| `format` | Output format | `json`, `csv`, `jsonp` |
| `options` | Query options | `unaligned`, `percentage` |
### Web Dashboard Integration Strategies
#### 1. Direct AJAX Calls
```javascript
// Fetch CPU data for dashboard widget
fetch('http://localhost:19999/api/v1/data?chart=system.cpu&after=-60&points=60')
.then(response => response.json())
.then(data => {
// Process data for chart library (Chart.js, D3, etc.)
updateCPUChart(data.result.data);
});
```
#### 2. Server-Side Proxy
```javascript
// Proxy through your web server to avoid CORS issues
fetch('/api/netdata/system.cpu?after=-60')
.then(response => response.json())
.then(data => updateWidget(data));
```
#### 3. Real-Time Updates
```javascript
// Poll for updates every second
setInterval(() => {
fetch('http://localhost:19999/api/v1/data?chart=system.cpu&after=-1&points=1')
.then(response => response.json())
.then(data => updateRealTimeMetrics(data));
}, 1000);
```
### Custom Dashboard Implementation Example
```html
<!DOCTYPE html>
<html>
<head>
<title>Home Lab Dashboard</title>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
</head>
<body>
<div class="dashboard">
<div class="widget">
<canvas id="cpuChart"></canvas>
</div>
<div class="widget">
<canvas id="memoryChart"></canvas>
</div>
<div class="widget">
<canvas id="networkChart"></canvas>
</div>
</div>
<script>
class NetdataDashboard {
constructor() {
this.baseUrl = 'http://localhost:19999/api/v1';
this.charts = {};
this.initCharts();
this.startPolling();
}
async fetchData(chart, timeRange = '-60') {
const response = await fetch(`${this.baseUrl}/data?chart=${chart}&after=${timeRange}&points=60`);
return response.json();
}
initCharts() {
// Initialize Chart.js charts
this.charts.cpu = new Chart(document.getElementById('cpuChart'), {
type: 'line',
data: { datasets: [] },
options: { responsive: true }
});
// ... other charts
}
async updateCPU() {
const data = await this.fetchData('system.cpu');
// Update chart with new data
this.charts.cpu.data.datasets = this.processNetdataForChart(data);
this.charts.cpu.update();
}
startPolling() {
setInterval(() => {
this.updateCPU();
this.updateMemory();
this.updateNetwork();
}, 1000);
}
}
const dashboard = new NetdataDashboard();
</script>
</body>
</html>
```
### Integration Considerations
#### 1. **CORS Handling**
- Netdata allows cross-origin requests by default
- For production, consider proxying through your web server
- Use server-side API calls for sensitive environments
#### 2. **Performance Optimization**
- Cache frequently accessed chart definitions
- Use appropriate `points` parameter to limit data transfer
- Implement efficient polling strategies
- Consider WebSocket connections for real-time updates
#### 3. **Data Processing**
- Netdata returns timestamps and values as arrays
- Convert to your chart library's expected format
- Handle missing data points gracefully
- Implement data aggregation for longer time ranges
#### 4. **Error Handling**
```javascript
async function safeNetdataFetch(endpoint) {
try {
const response = await fetch(endpoint);
if (!response.ok) throw new Error(`HTTP ${response.status}`);
return await response.json();
} catch (error) {
console.error('Netdata API error:', error);
return null;
}
}
```
### Multi-Node Dashboard
For Parent-Child deployments, you can create a unified dashboard:
```javascript
class MultiNodeDashboard {
constructor(nodes) {
this.nodes = nodes; // [{ name: 'server1', url: 'http://server1:19999' }, ...]
}
async fetchFromAllNodes(chart) {
const promises = this.nodes.map(async node => {
const data = await fetch(`${node.url}/api/v1/data?chart=${chart}&after=-60`);
return { node: node.name, data: await data.json() };
});
return Promise.all(promises);
}
}
```
### API Documentation Resources
- **Swagger Documentation**: https://learn.netdata.cloud/api
- **OpenAPI Spec**: https://raw.githubusercontent.com/netdata/netdata/master/src/web/api/netdata-swagger.yaml
- **Query Documentation**: https://learn.netdata.cloud/docs/developer-and-contributor-corner/rest-api/queries/
### Conclusion
Netdata's REST API provides excellent capabilities for custom web dashboard integration:
**Real-time data access** with sub-second latency
**Multiple output formats** including JSON and CSV
**Flexible query parameters** for precise data selection
**No authentication required** for local access
**CORS-friendly** for web applications
**Well-documented** with OpenAPI specification
The API is production-ready and provides all the data access patterns needed for sophisticated custom dashboards, making it an excellent choice for integrating Netdata metrics into your existing home lab web interfaces.